To use ID or not to use ID, is that a question?

Pierre Fraigniaud¹

Laboratoire d'Informatique Algorithmique (LIAFA) CNRS and University Paris Diderot

Workshop on Advances on Distributed Graph Algorithms, Oct 19, 2012

¹Joint work with

- Mika Göös (University of Toronto)
- Magnus Halldorsson (Reykjavik University)
- Amos Korman (CNRS and University Paris Diderot)
- Jukka Suomela (University of Helsinki).

Measuring the impact of IDs on local computation

Arguments in favor of LD = LD*

Arguments against $LD = LD^*$

4 Conclusion

Outline

Measuring the impact of IDs on local computation

4 Conclusion

$\mathcal{LOCAL} \textbf{ model}$

Nodes are labeled by pairwise distinct IDs (i.e., a non-negative integer)

Nodes perform in synchronous rounds.

At each round, a node u of a graph G = (V, E):

- Sends messages to its neighbors in G;
- Receives the messages sent by its neighbors;
- Performs some individual computation.

Construction task

Definition

A language is a decidable collection of pairs (G, x) where

•
$$G = (V, E)$$
 is a graph

• $x = \{x(u) \in \{0,1\}^*, u \in V\}$

Construction tasks for ${\cal L}$

Each node *u* has to compute an output value $x(u) \in \{0, 1\}^*$ such that $(G, x) \in \mathcal{L}$.

Examples

MIS, dominating set, MST, coloring, leader election, etc.

Challenge: symmetry breaking

Decision task

Decision tasks for ${\mathcal L}$

Each node *u* gets an input value $x(u) \in \{0, 1\}^*$, and all nodes have to collectively decide whether $(G, x) \in \mathcal{L}$.

Application

- Checking the correctness of results produced by a construction algorithm
- Provide a basic framework for a DC complexity theory

Decision task

Decision tasks for ${\mathcal L}$

Each node *u* gets an input value $x(u) \in \{0, 1\}^*$, and all nodes have to collectively decide whether $(G, x) \in \mathcal{L}$.

Application

- Checking the correctness of results produced by a construction algorithm
- Provide a basic framework for a DC complexity theory

Decision rules

- if $(G, x) \in \mathcal{L}$, then every node outputs "yes";
- if $(G, x) \notin \mathcal{L}$, then at least one node outputs "no".

Remark: symmetry breaking is not much of an issue

\mathcal{LOCAL} model revisited

Equivalence

Any algorithm A running in t = O(1) rounds in the \mathcal{LOCAL} model can be transformed into an algorithm A' in which every node u:

- Collects the structure of the ball B(u, t) together with all the inputs x(v) and identities Id(v) of these nodes
- Performs some individual computation

\mathcal{LOCAL} model revisited

Equivalence

Any algorithm A running in t = O(1) rounds in the \mathcal{LOCAL} model can be transformed into an algorithm A' in which every node u:

- Collects the structure of the ball B(u, t) together with all the inputs x(v) and identities Id(v) of these nodes
- Performs some individual computation

Anonymous \mathcal{LOCAL} model

An algorithm A running in t = O(1) rounds in the anonymous LOCAL model is an algorithm in which every node u:

- Gets a snapshot of the structure of the ball B(u, t) together with all the inputs x(v) of the nodes in this ball
- Performs some individual computation

Local decision classes

Let $t \ge 0$.

LD(t) is the class of all languages that can be decided in *t* rounds in the LOCAL model.

Local decision classes

Let $t \ge 0$.

LD(t) is the class of all languages that can be decided in *t* rounds in the LOCAL model.

 $LD^*(t)$ is the class of all languages that can be decided in *t* rounds in the anonymous LOCAL model

Local decision classes

Let $t \ge 0$.

LD(t) is the class of all languages that can be decided in *t* rounds in the LOCAL model.

 $LD^*(t)$ is the class of all languages that can be decided in *t* rounds in the anonymous LOCAL model

$$LD = \bigcup_{t \ge 0} LD(t)$$
 $LD^* = \bigcup_{t \ge 0} LD^*(t)$

$LD \ \textit{versus} \ LD^*$

By definition, $LD^* \subseteq LD$.

Conjecture:

 $LD = LD^{\ast}$

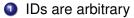
$LD \text{ versus } LD^*$

By definition, $LD^* \subseteq LD$.

Conjecture:

 $LD = LD^\ast$

Recall that:



2 Each individual algorithm is... computable

Measuring the impact of IDs on local computation

Whenever IDs are bounded to be in $\{1, \ldots, n\}$

Whenever IDs are bounded to be in $\{1, \ldots, n\}$

 $\mathcal{L} = \{(G, x) : G \text{ has at most } x \text{ nodes}\}$

Observation

 $\mathcal{L} \in LD \setminus LD^*$

Algorithm of node *v*:

If $Id(v) \le x$ then output "yes", else output "no".

Proof.

 $\mathcal{L} \notin \mathrm{LD}^*$ because nodes cannot locally distinguish C_n from $C_{n'}$ $\mathcal{L} \in \mathrm{LD} \iff n \leq x \iff \forall i \leq n$, we have $i \leq x$

Whenever the local "function" is not computable

Whenever the local "function" is not computable

Observation

 $LD = LD^*$

Proof.

Let A be a LD algorithm for \mathcal{L} .

LD* algorithm at node u: Return "no" if and only if ∃ ID-assignment to the nodes of B(u, t)for which A returns "no" at u. Measuring the impact of IDs on local computation

Objective of the talk

Discuss the issue: LD versus LD*

Outline

2 Arguments in favor of LD = LD*

4 Conclusion

Hereditary languages

Definition

A hereditary language is a language closed under node deletion.

Examples: *k*-Coloring, Independent set, Planar graphs, Interval graphs, Forests, Chordal graphs, Cographs, Perfect graphs, etc.

Observation

 $LD^* = LD$ for hereditary languages.

Proof

(p, q)-decider

- if $(G, x) \in \mathcal{L}$, then, with probability $\geq p$, all nodes output "yes";
- if $(G, x) \notin \mathcal{L}$, then, with probability $\geq q$, some node(s) outputs "no".

Proof

(p, q)-decider

- if $(G, x) \in \mathcal{L}$, then, with probability $\geq p$, all nodes output "yes";
- if $(G, x) \notin \mathcal{L}$, then, with probability $\geq q$, some node(s) outputs "no".

Theorem (F., Korman, Peleg [FOCS 2011])

In the \mathcal{LOCAL} model, if \mathcal{L} is hereditary, and there exists a (p,q)-decider A for \mathcal{L} with $p^2 + q > 1$, running in t rounds, then there exists a deterministic algorithm D for \mathcal{L} running in O(t) rounds.

Proof

(p, q)-decider

- if $(G, x) \in \mathcal{L}$, then, with probability $\geq p$, all nodes output "yes";
- if $(G, x) \notin \mathcal{L}$, then, with probability $\geq q$, some node(s) outputs "no".

Theorem (F., Korman, Peleg [FOCS 2011])

In the \mathcal{LOCAL} model, if \mathcal{L} is hereditary, and there exists a (p,q)-decider A for \mathcal{L} with $p^2 + q > 1$, running in t rounds, then there exists a deterministic algorithm D for \mathcal{L} running in O(t) rounds.

Proof.

- A LD algorithm A deciding \mathcal{L} is a (1, 1)-decider for \mathcal{L} .
- The algorithm *D* is in fact anonymous.

Bounded-degree and bounded-input instances

As a consequence of [F., Korman, Parter, and Peleg, DISC 2012]:

Observation

 $LD^* = LD$ for languages defined on the set of paths, with a finite set of input values.

Bounded-degree and bounded-input instances

As a consequence of [F., Korman, Parter, and Peleg, DISC 2012]:

Observation

 $LD^* = LD$ for languages defined on the set of paths, with a finite set of input values.

Observation

 $LD = LD^*$ for languages defined on bounded degree graphs, with a finite set of input values.

Proof.

There are finitely many different balls for instances (G, x) with

- $\deg(G) \leq \Delta$
- $|\mathbf{x}(u)| \le k$ for every node u

Oracles

Oracles

Oracle N

For every node *u* of an *n*-node graph, $n \leq \mathbf{N}(u)$.

We denote by LD^*N the class of languages that can be decided by a LD^* algorithm having access to oracle **N**.

Oracles

Oracle N

For every node *u* of an *n*-node graph, $n \leq \mathbf{N}(u)$.

We denote by LD^*N the class of languages that can be decided by a LD^* algorithm having access to oracle **N**.

Observation

 $LD^* \subseteq LD \subseteq LD^* \mathbf{N}.$

Proof.

Let *A* be a LD algorithm deciding \mathcal{L} in *t* rounds.

 LD^* **N** algorithm at node *u*:

Return "no" if and only if there exists an ID-assignment to the nodes of B(u, t) from the range $[1, \mathbf{N}(u)]$ for which *A* returns "no" at *u*.

Local verification class

Certificate
$$y = \{y(u) \in \{0, 1\}^*, u \in V\}.$$

Verification rules

- if $(G, x) \in \mathcal{L}$, then \exists certificate y : every node outputs "yes";
- if $(G, x) \notin \mathcal{L}$, then \forall certificate y : at least one node outputs "no".

Local verification class

Certificate
$$y = \{y(u) \in \{0, 1\}^*, u \in V\}.$$

Verification rules

- if $(G, x) \in \mathcal{L}$, then \exists certificate y : every node outputs "yes";
- if $(G, x) \notin \mathcal{L}$, then \forall certificate y : at least one node outputs "no".

Applications

- Checking the correctness of data structures (e.g., proof-labeling schemes)
- Non-deterministic version of LD (and LD*)

Local verification class

Certificate
$$y = \{y(u) \in \{0, 1\}^*, u \in V\}.$$

Verification rules

- if $(G, x) \in \mathcal{L}$, then \exists certificate y : every node outputs "yes";
- if $(G, x) \notin \mathcal{L}$, then \forall certificate y : at least one node outputs "no".

Applications

- Checking the correctness of data structures (e.g., proof-labeling schemes)
- Non-deterministic version of LD (and LD*)

NLD(t) (resp., $NLD^*(t)$) is the class of all languages that can be verified in *t* rounds in the LOCAL (resp., anonymous LOCAL) model.

$$NLD = \bigcup_{t \ge 0} NLD(t)$$
 $NLD^* = \bigcup_{t \ge 0} NLD^*(t)$

Conjecture holds non-deterministically

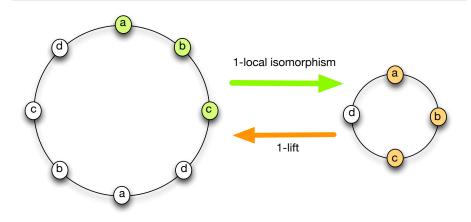
Theorem

 $NLD^* = NLD.$

Conjecture holds non-deterministically

Theorem

 $NLD^* = NLD.$



Proof.

• *L* is *t-closed under lift* if, for every two instances *I*, *I*' such that *I* is *t*-local isomorphic to *I*', we have:

$$I' \in \mathcal{L} \Rightarrow I \in \mathcal{L}$$

- If there exists $t \ge 1$ such that \mathcal{L} is *t*-closed under lift, then $\mathcal{L} \in \text{NLD}^*$.
- If L ∈ NLD, then there exists t ≥ 1 such that L is t-closed under lift.

Completeness under anonymous reduction

Definition

 \mathcal{L}_1 is locally reducible to \mathcal{L}_2 if there exists an algorithm \mathcal{A} running in t = O(1) rounds such that, for every instance (G, x), \mathcal{A} produces $out(u) \in \{0, 1\}^*$ at every node $u \in V(G)$, satisfying:

 $(G, \mathsf{x}) \in \mathcal{L}_1 \iff (G, \mathsf{out}) \in \mathcal{L}_2$.

Completeness under anonymous reduction

Definition

 \mathcal{L}_1 is locally reducible to \mathcal{L}_2 if there exists an algorithm \mathcal{A} running in t = O(1) rounds such that, for every instance (G, x), \mathcal{A} produces $out(u) \in \{0, 1\}^*$ at every node $u \in V(G)$, satisfying:

$$(G, \mathsf{x}) \in \mathcal{L}_1 \iff (G, \mathsf{out}) \in \mathcal{L}_2$$
.

 $\mathbf{x}(u) = (\mathcal{E}(u), \mathcal{S}(u))$

- $\mathcal{E}(u)$ is an element (say an integer $\mathcal{E}(u) \in \mathbb{N}$)
- S(u) is a finite collection of sets (say, of subsets of \mathbb{N})

 $\mathcal{L}^* = \{ (G, (\mathcal{E}, \mathcal{S})) \mid \exists v \in V(G), \ \exists S \in \mathcal{S}(v) \text{ s.t. } S \supseteq \{ \mathcal{E}(u) \mid u \in V(G) \} \}.$

Completeness under anonymous reduction

Definition

 \mathcal{L}_1 is locally reducible to \mathcal{L}_2 if there exists an algorithm \mathcal{A} running in t = O(1) rounds such that, for every instance (G, x), \mathcal{A} produces $out(u) \in \{0, 1\}^*$ at every node $u \in V(G)$, satisfying:

$$(G, \mathsf{x}) \in \mathcal{L}_1 \iff (G, \mathsf{out}) \in \mathcal{L}_2$$
.

 $\mathbf{x}(u) = (\mathcal{E}(u), \mathcal{S}(u))$

- $\mathcal{E}(u)$ is an element (say an integer $\mathcal{E}(u) \in \mathbb{N}$)
- S(u) is a finite collection of sets (say, of subsets of \mathbb{N})

 $\mathcal{L}^* = \{ (G, (\mathcal{E}, \mathcal{S})) \mid \exists v \in V(G), \ \exists S \in \mathcal{S}(v) \text{ s.t. } S \supseteq \{ \mathcal{E}(u) \mid u \in V(G) \} \}.$

Theorem (F., Korman, Peleg [FOCS 2011])

 \mathcal{L}^* is NLD-complete (for non anonymous local reductions).

Essence of the proof (NLD-hardness)

Let (G, x) be an instance for $\mathcal{L} \in NLD$, and let Id be an ID-assignment.

- $\mathcal{E}(v) = B_G(v, t)$, together with inputs and IDs,
- Let width(v) = $2^{|Id(v)|+|X(v)|}$.
- Node v first generates all instances $(G', x') \in \mathcal{L}$ where
 - G' is a graph with $k \leq width(v)$ vertices,
 - x' is a collection of k input strings of length at most width(v),
- For each (G', x'), node v generates all possible ID-assignments Id' to V(G') such that $\forall u \in V(G')$, $|Id'(u)| \le width(v)$.
- $S = \{B_{G'}(u, t), \text{ for every node } u \text{ of } (G', x')\} \in \mathcal{S}(v).$

Claim

 $(G, \mathsf{x}) \in \mathcal{L} \iff (G, \mathsf{out}) \in \mathcal{L}^*.$

Outline

Arguments in favor of $LD = LD^*$

Arguments against $LD = LD^*$

4 Conclusion

Languages with promise

Instances are of the form (G, M) where

- *G* is an *n*-node graph
- *M* is a Turing machine (the same for all nodes).

The promise:

 $\{(G, M) : M \text{ does not stop, or it stops in at most } n \text{ steps}\}.$

$$\begin{cases} \mathcal{L}_{yes} = \{(G, M) : M \text{ does not stop}\} \\ \mathcal{L}_{no} = \{(G, M) : M \text{ stops in at most } n \text{ steps}\}. \end{cases}$$

Languages with promise

Instances are of the form (G, M) where

- G is an n-node graph
- *M* is a Turing machine (the same for all nodes).

The promise:

 $\{(G, M) : M \text{ does not stop, or it stops in at most } n \text{ steps}\}.$

$$\begin{cases} \mathcal{L}_{yes} = \{(G, M) : M \text{ does not stop}\}\\ \mathcal{L}_{no} = \{(G, M) : M \text{ stops in at most } n \text{ steps}\}.\end{cases}$$

$\begin{array}{l} \textbf{Observation}\\ \mathcal{L} \in \text{LD} \setminus \text{LD}^* \end{array}$

Algorithm of node *v*:

If *M* does not stop in Id(v) steps then output "yes", else output "no".

Arguments against $LD = LD^*$

Bounded IDs: $Id(v) \in \{1, \ldots, n^c\}$

$$p\text{-counter:} \quad C(p) = \begin{array}{c} 000\\ 001\\ 010\\ 011\\ 100\\ 101\\ 110\\ 111 \end{array}$$

p copies of a C(p) vs. 1 copy of a $C(p^2)$ for prime p

		000 <mark>00</mark> 000
		000 <mark>000</mark> 001
		000 <mark>000</mark> 010
00000000	versus	000 <mark>000</mark> 011
01001001		000 <mark>000</mark> 100
10010010		000 <mark>000</mark> 101
11011011		000 <mark>000</mark> 110
00100100		000 <mark>000</mark> 111
01101101		000 <mark>001</mark> 000
10 <mark>110</mark> 110		: : :
11111111		111111100
		111111101
		111111110
		111111111

$$\mathcal{L} = \{(G, p) : G = p \times C(p).\}$$

$$\mathcal{L}^* = \{(G, p) : G = p imes \mathcal{C}(p), ext{ or } G = \mathcal{C}(p^2).\}$$

$$\mathcal{L} = \{(G, p) : G = p \times C(p).\}$$

$$\mathcal{L}^* = \{(G, p) : G = p imes \mathcal{C}(p), ext{ or } G = \mathcal{C}(p^2).\}$$

One can show that $\mathcal{L}^* \in LD^*$

$$\mathcal{L} = \{ (G, p) : G = p \times C(p) \}$$

$$\mathcal{L}^* = \{(G, p) : G = p imes C(p), ext{ or } G = C(p^2).\}$$

One can show that $\mathcal{L}^* \in LD^*$

But one cannot distinguish $p \times C(p)$ from $C(p^2)$ in LD^{*}

$$\mathcal{L} = \{ (G, p) : G = p \times C(p) \}$$

$$\mathcal{L}^* = \{(G, p): G = p imes \mathcal{C}(p), ext{ or } G = \mathcal{C}(p^2).\}$$

One can show that $\mathcal{L}^* \in LD^*$

But one cannot distinguish $p \times C(p)$ from $C(p^2)$ in LD^{*}

Observation

If IDs are in $\{1, \ldots, n^c\}$, then $p \times C(p)$ versus $C(p^2)$ is in LD.

Outline

Arguments in favor of $LD = LD^*$

• $LD = LD^*$?

- $LD = LD^*$?
- Is $\bigcup_{p^2+q>1} BPLD(p,q) = LD$ for non hereditary languages?

- $LD = LD^*$?
- Is $\bigcup_{p^2+q>1} BPLD(p,q) = LD$ for non hereditary languages?
- Is there a NLD*-complete problem (for anonymous local reductions)?

- $LD = LD^*$?
- Is $\bigcup_{p^2+q>1} BPLD(p,q) = LD$ for non hereditary languages?
- Is there a NLD*-complete problem (for anonymous local reductions)?

Thank you!