
Laboratoire Bordelais de Recherche en Informatique
UMR 5800 - Université Bordeaux I, 351, cours de la Libération,
33405 Talence cedex, France

Research Report RR-1330-04

Routing with Improved
Communication-Space Trade-Off

by Ittai Abraham, Cyril Gavoille, Dahlia Malkhi

July, 2004

0

Routing with Improved Communication-Space
Trade-Off

Ittai Abraham∗ Cyril Gavoille† Dahlia Malkhi∗

4th August 2004

Abstract

Given a weighted undirected network with arbitrary node names, we present
a family of routing schemes characterized by an integral parameter κ ≥ 1. The
scheme uses Õ(n1/κ log D) space routing table at each node, and routes along paths
of linear stretch O(κ), where D is the normalized diameter of the network. When D
is polynomial in n, the scheme has asymptotically optimal stretch factor. With the
same memory bound, the best previous results obtained stretch O(κ2).

Of independent interest, we also construct a single-source name-independent rout-
ing scheme for uniform weighted graphs with O(1) stretch and Õ(1) bits of storage.
With the same stretch, the best previous results obtained memory Õ(n1/9).

1 Introduction

The ability to route messages to specific destinations is one of the basic building blocks of
any networked distributed system. Consider a weighted undirected network G = (V, E, ω)
with n nodes having arbitrary unique network identifiers in {1, . . . , n}. A name-independent
routing scheme is a distributed algorithm that allows any source node to route messages
to any destination node, given the destination’s network identifier.

Several measures characterize the efficiency and feasibility of a routing scheme.

Memory: The amount of memory bits stored by each node for purposes of routing.

Headers: The size of message headers that are written by nodes along the route.

Stretch: The maximum ratio, over all pairs, of the length of the routing path produced
by the routing scheme by routing from s to t and the shortest path distance from s
to t in G.

∗School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
†Laboratoire Bordelais de Recherche en Informatique, University of Bordeaux, Bordeaux, France.

1

Our aim is to devise compact routing schemes with poly-logarithmic headers that have
improved tradeoffs between the memory consumption and the stretch factor.

Our contributions. We first present in Section 3 a family of routing schemes parame-
terized by an integer κ > 0, that has the complexity measures below. The Õ() notation
denotes complexity similar to O() up to poly-logarithmic factors. Concrete constants are
provided in the body of the paper.

Each node keeps Õ(n1/κ log D) bits of storage, where D is the normalized diameter of

the graph. Message headers are of size Õ(1), and each route has stretch O(κ)

When D is polynomial in n, the scheme has asymptotically optimal stretch factor, as
proven by [19]. With the same memory bound, the best previous results obtained stretch
O(κ2) [6, 3].

Then, in Section 4, we consider the problem of routing messages from a distinguished
node, the source, to all the other nodes. Single source routing problem with small local
storage can also be seen as a searching problem through DHT or distributed dictionaries, or
as locating keys in peer-to-peer systems. Efficient solution to these problems is interesting
on its own right, and might be of practical interests. We show prove that uniform weighted
graphs have a single-source name-independent routing scheme with O(1) stretch and Õ(1)
bits of storage, the first constant stretch routing scheme with poly-logarithmic memory.
The best previous bound with similar stretch was Õ(n1/9) bits of storage [16].

Previous results. There are known lower bounds on the compact routing problem in
general graphs. These are summarized in the first rows of Table 1. For lower bounds, the
table makes the subtle distinction between a designer port model and a fixed port model.
In the fixed port model (also known as the adversarial port model) the names of outgoing
links, or ports, from each node may be arbitrarily chosen by an adversary from the set
{1, . . . , n}. In the designer port model they may be determined by the designer of the
routing scheme. In particular, Gavoille and Gengler [13] indicate at least stretch-3 when
each node has memory o(n). For stretch-k routing scheme Peleg and Upfal [19] prove that
a total of Ω(n1+1/(2k+4)) routing information bits is required. Thorup and Zwick refine this
bound and show in [22] that the stretch is at least 2k + 1 when each node has memory
o(n1/k), proved for k = 1, 2, 3, 5 and conjectured for other values of k. For comprehensive
surveys on compact routing and compact network data structures, see [12, 14].

Initial results in [5] provide name-independent routing with Õ(n3/2) total memory.

Awerbuch and Peleg [6] presented a scheme that for any k, requires Õ(k2n1/k log D) bits
per node and routes on paths of stretch O(k2). Arias et al. [3] present a slight improvement
that uses the same memory bounds but improves the constant in the O(k2) stretch by a
factor of 4.

All known name-independent schemes that are “combinatorial” and do not rely on the
normalized diameter, D, in their storage bound have exponential stretch factor. Awerbuch
et al. [4] achieve with Õ(n1/k) memory stretch O(9k), and [3] improved to stretch O(2k)

2

stretch graphs port model memory address reference

All-to-All
s < 1.4 any unweighted designer n log n log n [15]1

s < 3 any unweighted designer n n [13]
s < 2k + 1 any weighted fixed n1/k n1/k [22]2

Single-Source
s = 1 unweighted tree designer

√
n dlog ne [10]3

s = 1 unweighted tree fixed n dlog ne [10]
s = 1 unweighted tree fixed log2 n/ log log n log2 n/ log log n [11]
s < 3 unweighted tree designer n log n Name-Indep. [2]

Table 1: Lower bounds on the local memory requirements. Bounds of Line 1,4,5,6,7 are
known to be optimal up to a constant factor, Line 2 and 3 are optimal up to a poly-
logarithmic factor.

with the same memory bound. For Õ(
√

n) memory Arias et al. provide stretch 5. Recently,

Abraham et al. [2], achieve optimal stretch 3 with Õ(
√

n).

A weaker variant of the routing problem, labeled routing, was initiated in [4]. In this
problem model, the algorithm’s designer can choose the network addresses of nodes (and
of course, use node names to store information about their location in the graph). This
paradigm does not provide for a realistic network design, however, the tools devised for its
solution have proven useful as building blocks of full routing schemes (in fact, we make use
here of certain building blocks devised in the context of labeled routing schemes).

Indeed, optimal compact schemes for labeled routing are known. The first non trivial
stretch-3 scheme was given by Cowen [9] with Õ(n2/3) memory. Later, Thorup and Zwick

[21, 22] improved the memory bound to only Õ(
√

n) bits. They also gave an elegant
generalization of their scheme, achieving stretch 4k−5 (and even 2k−1 with handshaking)

using only Õ(n1/k) bits. Additionally, there exist various labeled routing schemes suitable
only for certain restricted forms of graphs. For example, routing in a tree is explored, e.g.,
in [10, 22], achieving optimal routing. It requires Õ(1) bits for local tables and Õ(1) bits
for headers.

Due to space limitation, some proofs have been moved in [1].

1For stretch-1, a stronger lower bound of Ω(n log d) holds for every maximum degree d graphs, 3 ≤ d ≤
εn [15].

2The bound relies to a conjecture proved for k = 1, 2, 3, 5. The bound holds only for fixed port model
and weighted graphs with polynomial weights.

3If slightly larger than dlog ne bit addresses are allowed, namely (1 + o(1)) log n, then O(log n) bits
suffice for memory [22, 10].

3

2 Preliminaries

We denote an undirected weighted graph by G = (V, E, ω), where V is the set of nodes,
E the set of links, and ω : E → R+ a link-cost function. For any two nodes u, v ∈ V let
dG(u, v) be the cost of a minimum cost path from u to v, where a cost of a path is the sum

of weights of its edges. Define the normalized diameter of G, D = maxu,v dG(u,v)

minu 6=v dG(u,v)
.

Define B(v, r) = {u ∈ V | dG(v, u) ≤ r} as the set of nodes whose distance is at most
r from v.

We denote a rooted weighted tree by T = (V, r, E, ω), and define for every node u ∈
V its parent p(u) and for the root p(r) = r. The children of a node u are defined as
child(u) = {v | p(v) = u}. The weight of a node u denoted w(u) is the number of nodes in
u’s subtree not including u itself. Define the radius of T as maximum distance from the
root, rad(T) = maxu {dT (r, u)}.

Define the maximum edge weight of a weighted tree T = (V, E, ω) as maxE(T) =
maxe∈E {ω(e)}.

For u ∈ V , let N(u) = {v | (u, v) ∈ E} denote u’s neighbors. For every node u, let
port(u, v) for every v ∈ N(u) be a unique port name in {1, . . . , n}. If node u wants
to forward a message to node v ∈ N(u) it does so by sending the message on port
port(u, v). In the fixed port model (also known as the adversarial port model) the val-
ues {port(u, v) | v ∈ N(u)} ⊆ {1, . . . , n} are arbitrarily chosen.

3 Linear Communication-Space Trade-Off

Let G = (V, E, ω) be a graph, where |V | = n. In this section, we provide a family of
name-independent routing schemes for G parameterized by κ, in which each node keeps
Õ(n1/κ log D) storage, where D is the normalized diameter of the graph, and each route
has stretch O(κ). When D is polynomial in n, the scheme has asymptotically optimal
stretch factor, as proven by [19].

The construction makes use of two building blocks. The first one is a new tree cover
based on Sparse Partitions, the second is a novel tree-routing scheme we devise. Below, we
first state these building blocks, then make a black-box use of them for our full solution,
and finally go back to provide the details of our novel tree-routing scheme.

3.1 Tree cover based on Sparse Partitions

Lemma 3.1 [6, 7, 18] For every weighted graph G = (V, E, ω), |V | = n and integers
κ, ρ ≥ 1, there exists a polynomial algorithm that constructs a collection of rooted trees
TCκ,ρ such that:

1. (Cover) For all v ∈ V , there exists T ∈ TCκ,ρ such that B(v, ρ) ⊆ T .
2. (Sparse) For all v ∈ V , | {T ∈ TCκ,ρ | v ∈ T} | ≤ 2κn1/κ.

4

3. (Small radius) For all T ∈ TCκ,ρ, rad(T) ≤ (2κ− 1)ρ.
4. (Small edges) For all T ∈ TCκ,ρ, maxE(T) ≤ 2ρ.

Note that property (4) is a novel property that does to appear in the tree covers of
[6, 7, 18]. However, it is crucial for our construction and its proof is a simple consequence
of the manner in which the cover algorithm works: in each iteration, any cluster S added
to a cover Y has rad(S) ≤ ρ. The end result is a set of covers R that has properties (1),(2),
and (3). For every cover Y ∈ R define r(Y) as the initial node that started that cover,
and G[Y] as the subgraph containing Y and all the edges connecting nodes in Y whose
cost is at most 2ρ. G[Y] spans Y because Y is formed by a connected union of clusters
whose radius is at most ρ. The set TCκ,ρ is defined by taking every Y ∈ R and setting
TY ∈ TCκ,ρ to be a minimum cost path tree spanning G[Y] whose root is r(Y).

W.l.o.g. assume that the minimum cost edge is 1. We define an index set I =
{1, . . . , dlog De}. For all i ∈ I, we build a tree cover TCκ,2i according to Lemma 3.1
above. For all v ∈ V and i ∈ I, let Treev[i] be a tree T ∈ T Cκ,2i such that B(v, 2i) ⊆ T .

3.2 Bounded cost name-independent tree-routing

Having built a hierarchy of tree covers, any source v would like to perform name-
independent routing on Treev[i], for i ∈ I in increasing order, until the target is found.
Our second building block addresses this need using a novel and efficient construction.
This construction provides a name-independent error-reporting routing scheme in which
the cost of routing to a destination in the tree or learning that the name does not exist is
bounded by a function of the tree’s radius, the maximum edge cost, and a parameter κ.

Theorem 3.2 For every tree T = (U,E, ω), |U | = m, U ⊂ V , |V | = n, and integer
κ there exists a name-independent routing scheme on T with error-reporting that routes
on paths of length bounded by 4rad(T) + 2κmaxE(T), each node requires O(κn1/κ log2 n)
memory, and headers are of length O(log2 n). (And routing for a non-existent name in T
also incurs a path of length 4rad(T) + 2κmaxE(T) until a negative result is reported back
to the source.)

The proof of Theorem 3.2 is deferred until Section 3.4.

For a tree T containing a node v, we let φ(T, v) denote the routing information of node
v as required from Theorem 3.2.

3.3 The name-independent routing scheme

We now combine Theorem 3.2 with Lemma 3.1 in a manner similar to the hierarchical
routing scheme of Awerbuch and Peleg [7].

5

Storage. For all v ∈ V , i ∈ I, and T ∈ T Cκ,2i such that v ∈ T node v stores
φ(T, v). According to Lemma 3.1 and Theorem 3.2 above, the total storage of each node
is O(κ2n2/κ log D log2 n).

Routing. The sender s looks for destination t in the tree Trees[i] successively for i =
1, 2, . . . , dlog De using the construction in Theorem 3.2.

Stretch analysis. From Lemma 3.1 for T ∈ T Cκ,ρ we have that the cost 4rad(T) +
2κmaxE(T) is bounded by 4(2κ − 1)ρ + 2κ2ρ ≤ 12κρ. Hence, for any source s, integer
i ∈ I, the cost of searching for any target t in Trees[i] is at most 12κ2i.

For the index j ∈ I such that 2j−1 < d(s, t) ≤ 2j we have t ∈ B(v, 2j) ⊆ Treev[j] and
therefore t will be found in the jth phase. The total cost will be∑

1≤i≤j

12κ2i ≤ 12κ2j+1 < 48κd(s, t).

Hence, using κ̂ = 2κ instead of κ in the above construction, we proved the following.

Theorem 3.3 For every weighted graph G = (V, E, ω) whose normalized diameter is D
and integer κ ≥ 1, there is a polynomial time constructible name-independent routing
scheme with stretch O(κ) and memory O(κ2n1/κ log D log2 n).

In the remainder of this section, we provide the construction that proves Theorem 3.2
above.

3.4 Bounded-cost name-independent tree-routing

Consider a set V of n nodes in which every node u ∈ V has a unique name n(u) ∈
{1, . . . , n}. (We can remove this assumption using hash functions given by Lemma 4.4.
Let T = (U, r, E, ω) be a rooted tree with r ∈ U ⊆ V and |U | = m.

Sorting the nodes in U by their unique name n(), we denote U [i] as the ith largest
node in U , U [1] = maxv∈U{n(v)} and for 1 < i ≤ m define U [i] = maxv∈U{n(v) | n(v) <
U [i− 1]}.

In addition to their given name n(v), we give each node v ∈ T three more names.

First, we give v its name in the labeled tree-routing of Thorup & Zwick [22] and
Fraigniaud & Gavoille [10]:

Lemma 3.4 [10, 22] For every weighted tree T with n nodes there exists a labeled routing
scheme that, given any destination label, routes optimally on T from any source to the desti-
nation. The storage per node in T , the label size, and the header size are O(log2 n/ log log n)
bits. Given the information of a node and the label of the destination, routing decisions
take constant time.

6

For a tree T containing a node v, we let µ(T, v) denote the routing information of node
v and λ(T, v) denote the destination label of v in T as required from Lemma 3.4. Thus,
the first name we assign with v is `(v) = λ(T, v).

Secondly, d(v) denotes the depth-first-search (DFS) preorder enumeration of the rooted
tree, note that {d(u)|u ∈ U} = {1, . . . ,m}. Finally every node has a name s(v) which will
be defined as a function of its own subtree size relative to its siblings’ subtree sizes. In
some sense this reflects its rank among its siblings. The formal value of s(v) will be defined
later.

In our construction a node whose DFS enumeration is i is responsible to the ith largest
node in U . Formally, for any x ∈ T we define its responsibility as

o(x) = U [d(x)].

Given a target u the idea is first to route to the node y such that o(y) = n(u) and then
use labeled tree-routing to reach u.

We begin by presenting a simple name-independent scheme in which the storage re-
quirements on any node v is Õ(|child(v)|+ 1) and the total cost of routing will be at most
4rad(T).

Storage. Every node x ∈ T stores the following:

1. Let y ∈ T be such that o(x) = n(y). Node x stores the tuple (y, n(y), `(y)).
2. Node x stores A(x) = {o(y) | y ∈ child(x)} together with a map from any o(y) ∈ A(x)

to the corresponding port name port(x, y) to reach the child y.
3. x stores µ(T, x), its tree-routing label as required from Lemma 3.4.

Routing. Given a target u ∈ U , first route to the root r.

1. On a node x

(a) If o(x) = n(u) then use `(u) to reach u.
(b) If there is no child y ∈ child(x) such that o(y) ≤ n(u) then report back that

u /∈ T .
(c) Route to the child y ∈ child(x) with the maximum o(y) such that o(y) ≤ n(u).

Set x := y and goto 1.

This procedure is similar to the interval routing of [20, 24]. If the label `(u) is found,
routing proceeds using the labeled tree-routing scheme of Lemma 3.4. In the simple scheme
presented above, the cost of reaching root is at most rad(T), cost of reaching the node
storing the required label is bounded by rad(T) and reaching the target (or reporting an
error to the source) requires at most another 2rad(T). In the fixed port model the storage

per node is unbounded Õ(|child(v)|+ 1) = Õ(n).

7

Bounding storage. We proceed to show how, at the cost of adding at most κ length-2
cycles to the routing path, we can reduce the storage of each node to only Õ(n1/κ) bits
even in the fixed port model. The idea is to spread the information about v’s children in a
directory among v and its children child(v) in a load balanced manner that will ensure that
at most κ probes to directories are performed in the whole routing path until the target is
found.

First, for determining d(v) we use a DFS enumeration that always prefers heavy children
first (when faced with a choice, it explores a child with the maximum weight among the
unexplored children).

Second, for every node u, we now define its child name s(u). For any node v, we enu-
merate its children child(v) in their weighted order from large to small using words of the
alphabet Σ = {0, 1, 2, . . . n1/κ − 1}. Specifically, for any node, given a list of its children
sorted by their weight (from large to small), we name each of the first n1/κ nodes in non-
increasing order of their weights by a child name which consists of one digit in Σ in increas-
ing order (0), (1), . . . , (n1/κ−1). Then we name each of the next n2/κ nodes in order of their
weights by a child name in Σ2 in increasing lexicographic order, (0, 0), (0, 1), . . . , (0, n1/κ −
1), (1, 0), (1, 1), . . . , (1, n1/κ− 1), . . . , (n1/κ− 1, 0), . . . , (n1/κ− 1, n1/κ− 1). We continue this
naming process until all nodes in child(v) are exhausted, up to at most a κ-digit child name
in Σκ.

The central property of our naming is as follows. Let u be a child of v with a child
name s(u) consisting of j > 1 digits. Then w(u) ≤ w(v)/n(j−1)/κ. The reason this property
holds is that v must have n(j−1)/κ children that are at least as heavy as u. Since each one
weights at least w(u) their total weight would be larger than w(v), a contradiction.

Storage. For every x ∈ T , we define S(x) as follows:

S(x) =



(0) (1) . . . (n1/κ − 1)
(0, 0) (1, 0) . . . (n1/κ − 1, 0)

...
...

(0, 0, . . . , 0︸ ︷︷ ︸
κ−1

) (1, 0, . . . , 0︸ ︷︷ ︸
κ−1

) . . . (n1/κ − 1, 0, . . . , 0︸ ︷︷ ︸
κ−1

)


For each child y of x such that s(y) ∈ S(x), node x stores o(y) and a map from o(y) to

the corresponding port name port(x, y) to reach child y.

We now define the storage held by x’s children to assist in lookup. Let y be in child(x)
and assume y has a length-j child name, s(y), with with j − i trailing zeros, s(y) =
(a1, . . . , ai, 0, . . . , 0︸ ︷︷ ︸

j−i

) for some i ≤ j. We define a subset S ′(y) of the enumerated set of v’s

8

children as follows:

S ′(y) =



(a1, . . . , ai, 0, . . . , 0︸ ︷︷ ︸
j−i−1

, 0) (a1, . . . , ai, 0, . . . , 0︸ ︷︷ ︸
j−i−1

, 1) . . . (a1, . . . , ai, 0, . . . , 0︸ ︷︷ ︸
j−i−1

, n1/κ − 1)

(a1, . . . , ai, 0, . . . , 0︸ ︷︷ ︸
j−i−2

, 0, 0) (a1, . . . , ai, 0, . . . , 0︸ ︷︷ ︸
j−i−2

, 1, 0) . . . (a1, . . . , ai, 0, . . . , 0︸ ︷︷ ︸
j−i−2

, n1/κ − 1, 0)

...
...

(a1, . . . , ai, 0, 0, . . . , 0︸ ︷︷ ︸
j−i−1

) (a1, . . . , ai, 1, 0, . . . , 0︸ ︷︷ ︸
j−i−1

) . . . (a1, . . . , ai, n
1/κ − 1, 0, . . . , 0︸ ︷︷ ︸

j−i−1

)


The child node y of x stores the following information. For each z ∈ child(x) such that
s(z) ∈ S ′(y), y stores o(z) and a map from o(z) to the corresponding port name port(x, z)
to reach child z from parent x.

Intuitively, here is how this directory scheme works. Suppose the current node is x
and the target node is u. The child-name enumeration of x’s children is consistent with
their responsibility enumeration order. That is, let v be the child of x whose sub-tree has
responsibility for the value n(u). Denote the child name of v by s(v) = (a1, . . . , aj). Then
because of our DFS ordering, given any child y ∈ child(x):

• If s(y) has more than j digits then o(v) ≤ n(u) < o(y);
• If s(y) has less than j digits then o(y) < o(v) ≤ n(u);
• If s(y) has j digits, and according to lexicographical order s(y) < s(v), then o(y) <

o(v) ≤ n(u);
• If s(y) has j digits, and according to lexicographical order s(v) < s(y), then o(v) ≤

n(u) < o(y);

Given a target u, node x would like to find the appropriate child v such that o(v) is the
maximum value out of all {o(y) ≤ n(u) | y ∈ child(x)}. Since x does not maintain o(y) of
all of its children y ∈ child(x), the highest o() value it maintains that is no greater than
the target n(u) belongs to the node y1 with child name s(y1) = (a1, 0, . . . , 0︸ ︷︷ ︸

j−1

). Continuing

from y1, it too maintains only partial information about x’s children. Here, the highest
o() value it maintains that is no greater than the target n(u) belongs to the node y2 with
child name s(y2) = (a1, 0, . . . , 0︸ ︷︷ ︸

i

, ai+2, 0, . . . , 0︸ ︷︷ ︸
j−i−2

) where i ≥ 0 is the number of consecutive

zeros that s(v) has starting from its second digit a2. And so on. With each such step, we
reach a child of x whose child name matches the target’s child name s(v) in one more digit
at least (and zero’s in v’s child name are matched without further steps). After at most j
such steps, we reach v, and continue to search for u within the sub-tree it roots.

More precisely, the routing algorithm is as follows.

Routing algorithm. Given a target u ∈ U , first route to the root r. Then, on any node
x there are three cases:

9

1. if o(x) = n(u) then use `(u) to reach u.
2. if x is a leaf or if n(u) < o(y) for all y such that s(y) ∈ S(x), then report back that

u /∈ T .
3. Otherwise, we would like to route to the child y ∈ child(x) with the maximum o(y)

value out of all y such that o(y) ≤ n(u). Since x does not store o(y) for all y ∈ child(x)
performing this case is done using the following directory algorithm.

Directory algorithm.

1. Route to the child y with maximum o(y) value out of all y such that o(y) ≤ n(u)
and s(y) ∈ S(x).

2. On node y,

(a) If n(u) < o(z) for all z such that s(z) ∈ S ′(y) then the directory algorithm has
reached the required child and the routing algorithm can proceed from node y.

(b) Otherwise, route to the sibling z such that o(z) has maximum value out of all
z such that o(z) ≤ n(u) and s(z) ∈ S ′(y).
Set y := z and goto 2.

3.5 Analysis

Lemma 3.5 Given a parameter κ, the name-independent error-reporting tree-routing
scheme requires O(κn1/κ log2 n) bits of storage per node in the tree.

Proof. Each node v stores Õ(1) information for each child u ∈ child(v) such that
s(u) ∈ S(v). By definition of S(v), it contains at most κn1/κ members, hence the storage

is Õ(κn1/κ). In addition node v maintains information to assist its parent node p(v).

This includes Õ(1) storage per each member in S ′(v), which, by definition, also requires

Õ(κn1/κ) bits. Finally, each node v stores the routing information µ(T, v) according to

Lemma 3.4, requiring Õ(1) storage. Thus, the total storage of this scheme is Õ(κn1/κ)
items per node, each of O(log2 n) bits at most. �

Lemma 3.6 Given a parameter κ, the name-independent error-reporting tree-routing
scheme routs on paths whose cost is at most

4rad(T) + 2κmaxE(T)

until either the destination is reached or the source receives notification that the destination
does not exists in the tree

Proof. We now bound the total cost of searching for a target u on a tree T . Reaching
the root takes at most rad(T), reaching the node v such that o(v) = n(u) (or getting a

10

negative result) takes rad(T) + 2jmaxE(T) where j is the number of times the directory
service had to probe other children along the path to node u. Once node u is reached,
routing to t or reporting a negative result back to the source takes at most 2rad(T).

Therefore, we are left to show that j ≤ κ. The directory structure above guarantees
that if appropriate next hop child has a length-i child name then it will reached in at most
i − 1 intermediate queries. Specifically, let s(y) denote a length-i child name of x’s child,
whose sub-tree stores information on a target n(u). Given a target name n(u), node v finds
o(u1), the maximum name stored by v that is at most n(u). Then v routes to u1, a child
with length-i child-name whose first digit is the same as the child covering n(u). Node u1

is either the actual child y, or it finds o(u2), the maximum name stored in u1 that is at
most n(u). Then u1 routes up to v and down to u2, which has a length-i child name that
matches s(y) in at least the first two digits. This process continues until the correct child
y is reached after at most i− 1 intermediate steps from v to a child and back.

A crucial property maintained by the storage hierarchy is that if v has weight w(v),
then a child with a length-i child name with i > 1 has weight at most w(v)/n(i−1)/κ. This
is due to the weighted sorting: Otherwise the n(i−1)/κ children with length i−1 child names
would each have at least w(v)/n(i−1)/κ children, and their total weight would be larger than
w(v) which is a contradiction.

Following a path from the root r to the node containing the label takes at most distance
rad(T). Along the path, every node with child name of length i > 1 may cost additional
i− 1 double-steps from its parent to a child and back to the parent. Since every node with
a length-i id reduces the weight of the tree by a factor of at least n(i−1)/κ, there are at
most j ≤ κ such extra double-steps along the whole path. Each double-step costs at most
2maxE(T). Therefore, the total distance of the path is bounded by 4rad(T)+2κmaxE(T).

�

4 Single-Source Name-Independent Routing Scheme

In this part we consider the problem of routing messages from a distinguished node, the
source, to all the other nodes, while keeping the name-independent constraint. The Single-
source routing problem with small local storage can also be seen as a searching problem
through a distributed information system, e.g., a distributed dictionary or a hash table.
Efficient solutions to these problems are interesting in their own right.

We restrict our attention to single-source routing schemes in trees rooted at the source,
i.e., the single-source shortest path tree rooted at the source in the graph. We assume that
node names of the tree are taken from some universe U with |U| ≥ n, the number of nodes
of the tree. The names and the port numbers are assumed to be fixed by an adversary
(fixed port model) after the given tree and before the design of the routing scheme.

A single-source routing scheme on a tree T with source s is L-reporting if, for every
v ∈ U, the routing from s to v reports to s a failure mark in the header if v /∈ T after
a loop of cost at most L. And, if v ∈ T , then the route from s to v has cost at most

11

L + dT (s, v). Note that the stretch constraint of an L-reporting routing scheme concerns
restriction on route length to destinations v ∈ T only. In the following d(T) denotes the
depth of the tree T , i.e., d(T) = maxv∈T dT (s, v).

Theorem 4.1 Every unweighted rooted tree T with n nodes taken from U has a single-
source name-independent routing scheme of stretch 17 that is 12d(T)-reporting, and us-
ing O(log5 n/(log log n)2 + log |U| log3 n/ log log n) bits per node, that is o(log5 n) if |U| ≤
no(log n log log n).

The best previous scheme, due to [16] and for |U| = n, was using Õ(n1/k) bits for a

stretch factor of 2k − 1, i.e., Õ(n1/9) bits for stretch 17. However our scheme works only
for uniform weights.

The next lemma reduces the problem to one of designing efficient L-reporting schemes
on trees without any specification of the stretch. Observe that there is no straightforward
relationship between the L-reporting property and the stretch factor property of a routing
scheme. This reduction can be seen as the specialization of the Awerbuch-Peleg’s sparse
cover for trees [6, 18].

Lemma 4.2 Assume that there exists α ≥ 1 such that every unweighted rooted tree T with
at most n nodes has (in the fixed port model) a single-source name-independent routing
scheme that is αd(T)-reporting and that uses at most M bits per node. Then, every rooted
tree T with n nodes has a single-source name-independent routing scheme (also in the fixed
port model) of stretch 4α+1 that is 3αd(T)-reporting, and using at most M(dlog d(T)e+1)
bits per node.

Proof. Let α ≥ 1 be a number satisfying the hypothesis of Lemma 4.2. We consider
a tree T rooted at s. For every integer d ∈ {1, . . . , d(T)}, Td denotes the subtree of T
composed of the nodes at a distance at most d from s, and let Sd denote a single-source
name-independent routing scheme for Td that is αd-reporting and that uses at most M
bits per node.

Recall that for every L-reporting routing scheme on T , the length of the route from s
to v ∈ T is at most L + dT (s, v). So if d(T) ≤ 1, every αd(T)-reporting routing scheme on
T is of stretch at most α + 1 which satisfies Lemma 4.2. So assume that d(T) > 1.

The scheme we propose for T is defined as follows. The storage for each node v of T
is composed of the storage of v in all the schemes S2p , S2p+1 , . . . , S2q , Sd(T), where p is the
smallest integer ≥ 0 such that v ∈ T2p and where q is the greatest integer ≥ 0 such that
2q < d(T). Note that q = dlog d(T)e − 1 exists since d(T) > 1. The space requirement for
v is at most M(q − p + 2) ≤ M(dlog d(T)e + 1) bits as claimed. We emphasize here that
each routing scheme Sd should be constructed in the fixed port model since otherwise they
might be not superposed.

The routing algorithm for sending a message to any v ∈ U consists in searching v from
s successively with the routing schemes S1, S2, S4, . . . , S2q , Sd(T). If v /∈ T , then v /∈ T2i for

12

all i’s and v /∈ Td(T) as well. Thus the scheme will successively report to s a failure mark.
Such a route is of length at most

q∑
i=0

(α2i) + αd(T) = α(2q+1 − 1) + αd(T) < α
(
2dlog d(T)e + d(T)

)
< 3αd(T) .

Now, assume that v ∈ T . As we seen previously, if dT (s, v) ≤ 1, then the stretch is at
most α+1. Assume dT (s, v) > 1. The scheme reports a failure mark for all the schemes S2i

with 2i < dT (s, v), and then routes to v along a path of length bounded by αd(T)+dT (s, v)
by the uses of the scheme Sd(T) in the worst-case. So the total length of this route is at
most

q∑
i=0

(α2i) + αd(T) + dT (s, v) < 3αd(T) + dT (s, v)

reusing the previous equation. So we have proved that the scheme is 3αd(T)-reporting.

In order to bound the stretch, let k denote the greatest integer such that 2k < dT (s, v).
Note that dT (s, v) ≤ 2k+1. From the previous discussion, the length of the route from s to
v ∈ T is bounded by

k∑
i=0

(α2i) + α2k+1 + dT (s, v) ≤ α
(
2k+1 − 1

)
+ α2k+1 + dT (s, v)

< 4α2k + dT (s, v) < 4αdT (s, v) + dT (s, v) .

Therefore, the scheme is of stretch at most 4α + 1 that completes the proof. �

According Lemma 4.2, to prove Theorem 4.1 it suffices to prove that we can set α = 4
with a suitable memory bound M . More precisely:

Theorem 4.3 Every unweighted rooted tree with n nodes taken from U has a single-source
name-independent routing scheme (in the fixed port model) that is 4d(T)-reporting, and
using O(log4 n/(log log n)2 + log |U| log2 n/ log log n) bits per node. Moreover, the first
header construction takes O(log n) time at the source, and all the other routing decisions
O(log log n) time.

Before proving Theorem 4.3 we need some basic results about hash functions (see [8,
17]). W.l.o.g. we assume that U = {0, . . . , |U| − 1}.

Lemma 4.4 [8] Let P = {0, . . . , p− 1} for some prime number p = Θ(n). There exists
a family of hash functions H = {h : U → P} such that for every set V ⊆ U with |V | = n,
there exists a function h ∈ H such that:

1. h is a degree-O(log n) polynomial of the field Zp;
2. | {v ∈ V | h(v) = k} | = O(log n) for every k ∈ P;

The first point of Lemma 4.4 implies that each function h can be stored with O(log2 n)
bits and have time complexity O(log n), whereas the second point states that there are at
most O(log n) collisions for each v ∈ V .

13

The proof of Theorem 4.3. From now, we consider a tree T with source s. The node
set of T is denoted by V , n = |V |, and p is a prime number such that n ≤ p < 2n. (Such p
always exists from Bertrand’s Postulate and Dirichlet’s Theorem). Let P = {0, . . . , p− 1}.
Each value k ∈ P is called hereafter a key. We consider the hash function h ∈ H for V as
given by Lemma 4.4.

For every v ∈ V , we denote by `T (v) the tree-routing label of v in T , which is used
for the routing in T from source s to destination v. The length of each of these labels is
O(log2 n/ log log n) bits [22, 10].

Overview of the scheme. The basic idea of the scheme is to use indirection: the keys
of P are mapped to the nodes of T in a balanced way, typically with no more than Õ(1)
keys per node. Then the node on which the key k is mapped is in charge of the tree-routing
label of all names u ∈ U such that h(u) = k. First we route from s to the node in charge
of k, and then to the destination.

More precisely, consider the routing from the source s to an arbitrary name v ∈ U.
First s hashes v into the key k = h(v) ∈ P. Then we use a label-based routing scheme (i.e.,
a name-dependant routing scheme) to find a route in T from s to the node labeled k in this
routing scheme, say node w. Roughly speaking, this labeled scheme is similar to Interval
Routing Scheme [20, 24] which is based on a DFS numbering of the nodes. Locally w is
aware of the tree-routing labels `T (s), `T (w), and `T (u) for all u ∈ V such that h(u) = k.
Node w also stores the corresponding list of names, i.e., the u’s of V with h(u) = k. Our
scheme ensures that each possible key of P is mapped to exactly one node of T . So that
once node w is attained, we only need to check whether v belongs or not to the list of
names stored by w. If it does not belong to, then we can conclude that v /∈ V , and then w
reports to s a failure mark thanks to the tree-routing labels `T (s) and `T (w). If v is found
in the w’s name list, then w directly routes to v thanks to `T (v) and `T (w). Such a scheme
is therefore 2d(T)-reporting.

However, in the scheme sketched above, the routing from s to k cannot be done via
a standard implementation of Interval Routing Scheme for several reasons: 1) the set of
keys, P, is in general larger than V ; 2) the memory requirements of node w for interval

routing is O(deg(w) log n) bits whereas we expect Õ(1) bits of storage for every node. More
fundamentally, even if p = n and even if the designer port model is allowed, then every
scheme that bijectively assign labels to nodes require Ω(

√
n) bits of routing information at

the source in the worst-case [10]. This lower bound forces us to map keys over the nodes
in a non fully-balanced way.

The remainder of the proof consists in constructing the mapping from P to V , and the
compact encoding of routing information.

The header of the message at any step of the routing from s to v is composed at most
of the following fields: a type of message on a constant number of bits, a key of P, a
name of U, and possibly a tree-routing label. The second and the third fields never change
and are initialized to h(v) and v respectively. The length of the header is no more than

14

O(log n + log |U|) bits.

Simulating designer port model via double-step routing. An important hypothe-
sis to apply Lemma 4.2 is that the ports of each node x of the tree are arbitrarily permuted
(the fixed port model). However, according to the next remark we will assume that the
routing from s to the key k is done in the designer port model (i.e., the ports of each node
have been permuted with a desirable permutation). Nevertheless it should be clear that
once k is attained, then the routing to v (if v ∈ V) or to s (if v /∈ V) is done thanks to the
label `T (v) or `T (s) that have been computed in the fixed port model.

Indeed, during the routing from s to the key of v, one can apply the following routing
simulation: Let portd(x, y) (resp. portf (x, y)) be the port number between x and y in the
designer port model (resp. in the fixed port model). For the simulation, every node y with
parent x stores the numbers p1 = portd(y, x), p2 = portf (y, x), and p3 = portf (x, z) where
z is the child of x such that portd(x, z) = portf (x, y). In y, if the routing scheme outputs
p1, then the answer is converted to port p2. If in x, the answer p of the routing scheme is
different from port number of its parent (x knows it), x sends the message on port number
p with a mark m1 attached to the header. If y receives a message with mark m1, it forwards
to its parent, on port p2, the message with mark m2 and the value p3 attached to its header.
Finally, in x, if the routing scheme receives a header with a m2 mark, then it extracts from
the header the value p, and forward the message on port number p. To summarize the
routing from y toward its parent is done as previously, whereas the routing from x toward
its child z is done by a route of length 3. So if v /∈ V , the routing will report to s a fail
mark after a route of length 3d(T) + d(T) = 4d(T) instead of 2d(T). And if v ∈ V , the
route length is at most 3d(T)+dT (k, v) ≤ 4d(T)+dT (s, v). This leads to a 4d(T)-reporting
scheme with an O(log n) additive factor on the memory requirements and on the header
size. So, simulating and superposing the O(log d(T)) = O(log n) designer port schemes
raise the overall memory requirement of a node to an O(log2 n) additive factor, for headers
the overhead is only O(log log n) bits since the schemes are used successively and so only
the index i ≤ O(log n) of the current scheme needs to be specified.

Routing in the designer port model. So we restrict our attention to the routing
from s to the key of v in the designer port model. From now we assume that the children
x1, x2, . . . of every node x are ordered according to their increasing number of descendants
and that portd(x, xi) = i. (We fix portd(xi, x) = 0.) Let w(x) be the weight of x defined
by the number of descendents of x in T (x included).

The scheme is parametrized by the integer t = dlog ne. We partition the nodes of T in
heavy and light. The t heaviest children of x are heavy and the others (if any) are light.
The root is heavy. Clearly, if the child xi of x is light, then w(xi) < w(x)/t, so that the
number of light ancestors of xi is at most O(logt n).

The routing scheme is based on two numbers, c(x) and q(x), we assign to each node x.
The first, called the charge of x, represents the total number of keys that must be mapped

15

on the nodes of Tx, the subtree of root x. (So for the root, c(s) = p). The second one
denotes the number of keys assigned to x. These two numbers must satisfy that, for every
x,

c(x) =
∑
y∈Tx

q(y) . (1)

The heart of our scheme is the way we compute and encode c(x) while balancing the

charge of x over its descendants, i.e., guaranteeing q(y) = Õ(1) for every y. Given the
numbers c(x) and q(x) one can then route through a modified DFS number f(x) associated
with each x and defined by: f(s) := 0, and f(xi) := f(x) + q(x) +

∑
j<i c(xj), where xi is

the ith child of x. (This matches to the standard definition if q(x) = 1 for every x.)

Now the routing is done similarly to Interval Routing Scheme. Let w be the node in
charge of h(v), the key of v. Assume that w is a descendant of some node x, initially x = s.
It is easy to see that:

1. either h(v) ∈ [f(x), f(x) + q(x)), and w = x, i.e., the key of v is stored by x;
2. or w is a descendant of xi where h(v) ∈ [f(xi), f(xi+1)), and thus the routing in x

must answer port i.

So the routing from x to h(v) is well defined if x is aware of f(x), q(x), and of the
vector ~c(x) = (c(x1), c(x2), . . .) of charges of the children of x. Indeed the numbers f(xi)
and f(xi+1) can be computed from f(x), q(x), and from ~c(x). We are now left with the
description of c(x), q(x), and the compact encoding of ~c(x).

For that, let W be the function defined by W (k, q,m) = 2k · (1+1/q)m, where k,m ≥ 0
and q ≥ 1 are all integers. Function W satisfies the following properties:

1. q ·W (k, q,m + 1) = (q + 1)·W (k, q,m).
2. W (k, q, m) < W (k, q,m + 1), since 1 + 1/q > 1.
3. W (k, q, q) ≥ W (k + 1, q, 0), because simple analysis shows that (1 + 1/q)q ≥ 2 for

q ≥ 1.

In particular Property 3 implies that for every w ≥ 1, there exists m ∈ {0, . . . , q − 1} such
that W (k, q,m) ≤ w < W (k, q,m + 1) where k = blog wc (clearly W (k, q, 0) = 2k ≤ w <
2k+1 = W (k + 1, q, 0)), and by strictness of inequality of Property 2, m is unique.

Computing c(x) and q(x). The numbers c(x) and q(x) are computed through a DFS
with priority to lightest children. At any step, if c(x) = 0, then we skip x in the search.
We start from the source by setting:

0. c(s) := p and q(s) := dp/ne ∈ {1, 2}.

Then, for the ith child of x such that c(x) > 0:

1. Let q = q(x) and k = blog w(xi)c.
2. If xi is heavy, then c(xi) := q ·w(xi) and q(xi) := q.

16

3. If xi is light, then c(xi) := d(q + 1)·W (k, q, m)e and q(xi) := q + 1 where m is such
that w(xi) ∈ [W (k, q, m), W (k, q,m + 1)).

4. If
∑

j≤i c(xj) > c(x)− q(x), then correct c(xi) := max{c(x)− q(x)−
∑

j<i c(xj), 0}.
5. If q(xi) > c(xi), then correct q(xi) := c(xi).

By induction on the depth of x, q(x) is at most q(s) plus the number of x’s light
ancestors. Since q(s) ≤ 2, it follows that q(x) = O(logt n) = O(log n/ log log n).

In order to validate our routing algorithm, based on f(x), q(x) and ~c(x), we need to
show that c(x) and q(x) numbers satisfy Eq. (1), i.e.,

Lemma 4.5 For every x, c(x) =
∑

y∈Tx
q(y).

Proof. Let us first show that, for every x,

c(x) ≤ q(x)w(x) (2)

and for every child xi of x for which Line 4 does not apply,

q(x)w(xi) ≤ c(xi) . (3)

Note that c(s) = p ≤ dp/nen = q(s)w(s), so Ineq. (2) holds for x = s. If xi is heavy,
then c(xi) = q(x)w(xi) and Ineq. (3) holds, and since q(xi) = q(x), Ineq. (2) holds as
well. So assume that xi is light. We have w(xi) ≥ W (k, q(x), m) that implies (q(x) +
1)w(xi) ≥ (q(x) + 1)W (k, q(x), m). Note that q(xi) = q(x) + 1, and (q(x) + 1)w(xi) is
an integer, so q(xi)w(xi) ≥ d(q(x) + 1)W (k, q(x), m)e ≥ c(xi) (there is equality if Line 4
does not apply). Since we have seen that c(s) ≤ q(s)w(s), it follows, setting x = xi, that
c(x) ≤ q(x)w(x) for every x, proving therefore Ineq. (2). To prove Ineq. (3) we assume
that Line 4 does not apply to xi. We have w(xi) < W (k, q(x), m+1) implying q(x)w(xi) <
q(x)W (k, q(x), m+1). By Property 1 of function W , q(x)w(xi) < (q(x)+1)W (k, q(x), m) ≤
d(q(x) + 1)W (k, q(x), m)e = c(xi). This completes the proof of Ineq. (3).

Let us denote by Q(x) =
∑

y∈Tx
q(y), and let us prove by induction on w(x), that

c(x) = Q(x) for every x. If w(x) = 1, then Q(x) = q(x). By Line 5, q(x) ≤ c(x), and by
Ineq. (2), c(x) ≤ q(x)w(x). So, for w(x) = 1, c(x) = Q(x) as claimed.

Now assume that c(xi) = Q(xi) holds for every child xi of x. We want to prove that
c(x) = Q(x). By definition Q(x) = q(x)+

∑
i Q(xi) that is Q(x) = q(x)+

∑
i c(xi) applying

the induction hypothesis.

If Line 4 applies to some child of x, then c(x) − q(x) =
∑

i c(xi), and thus c(x) =
Q(x) and the result holds. So assume that Line 4 does not apply to any child of x. So,∑

i c(xi) ≤ c(x) − q(x), i.e., Q(x) ≤ c(x). Ineq. (3) applied to xi gives c(xi) ≥ q(x)w(xi).
Thus

∑
i c(xi) ≥ q(x)

∑
i w(xi). Observing that w(x) = 1 +

∑
i w(xi), it follows that

Q(x) = q(x) +
∑

i

c(xi) ≥ q(x)

(
1 +

∑
i

w(xi)

)
= q(x)w(x) ≥ c(x)

17

by Ineq. (2). So we can conclude that Q(x) = c(x) for every x, completing the proof of
Lemma 4.5. �

A range query on a sequence of integers (c1, . . . , cr) consists in finding, for every input z,
the index i such that z ∈ [

∑
j≤i cj,

∑
j≤i+1 cj). Clearly, the routing algorithm as described

above reduces to the range query z = h(v) − f(x) − q(x) on the sequence ~c(x). Remark:
range queries can be solved in O(log log n) time with the O(r) space van Emde Boas’s
data structure [23]. We show here that one can obtain the same time complexity while
working on a very compact representation of the sequence. Compact representation of ~c(x)
is possible because of the special choice of c(xi) values.

Lemma 4.6 For every x, ~c(x) can be coded with a data structure of O(log3 n/ log log n)
bits supporting range queries in O(log log n) worst-case time.

Proof. Let ~c(x) = (c(x1), c(x2), . . .). Lemma 4.5 implies that c(x) ≤ c(s) < 2n. If xi

is heavy, then we store in extenso c(xi) with O(log n) bits since c(xi) < 2n. There are at
most t heavy children so it sums to O(t log n) bits.

Consider the value of c(xi) before applying Line 4. Since q is fixed for all the children,
so the properties of function W implies that c(xi) is nondecreasing with k, and then is
nondecreasing with m for each fixed k (Property 2). It follows that c(xi) is nondecreasing
with i. Therefore, the children on which Line 4 does not apply have consecutive indices
starting from 1. Such children, say x1, . . . , xr, are called standard children. The charge of
the other children can be stored with O(log n) bits since only xr+1 might have a non null
charge, all the other children with larger indices having a null charge (so it suffices to store
their number).

We are left with the coding of standard children. Observe that given q, each integer c(xi)
is entirely determined by the pair (k,m), using function W . We have k ∈ {0, . . . , blog pc},
and from Property 3 on W , m ∈ {0, . . . , q − 1}. There is at most kq = O(log n logt n)
different pairs (k,m), thus as many different values of charge.

Since c(xi) is nondecreasing with i, the sub-sequence S = (c(x1), . . . , c(xr)) can be
efficiently represented as two integer sequences (c1, . . . , cp) and (a1, . . . , ap) such that ai is
the number of occurrences of ci in S. For instance, if S = (1, 1, 1, 4, 8, 8, 8, 8), then S is
coded by (1, 4, 8) and (3, 1, 4). Clearly, in this representation all the ci’s are different, so
p ≤ kq. Therefore, S can be coded with O(kq log n) bits since ci, ai ≤ O(n).

So the number of bits to represent ~c(x) is at most:

O(t log n + kq log n) = O(t log n + log2 n logt n) = O(log3 n/ log log n) .

We now examine the time complexity of a range query z on ~c(x). The problem reduces to
a query on S, the standard children sub-sequence. We have seen that c(xi) is nondecreasing
with i, so do the ci’s. Let si =

∑
j≤i cj be the ith partial sum of S. Storing the si’s instead

of the ci’s one can then answer to any range query z on S in O(log(kq)) = O(log log n)
time by the use of binary search. For each ci of S we also store the least index li such that

18

c(xli) = ci. Note that the storage of the si’s and li’s does not increase the space complexity.
We can check that the answer to the range query z on S is i0 given by:

i0 := li +

⌊
z − si

ai

⌋
.

that completes the proof of Lemma 4.6. �

The time complexity of the routing in x 6= s is bounded by a range query in ~c(x), since
the other tasks consist in search in tables of size O(log n) (so in O(log log n) time using
binary search), or consist in routing with tree-routing label that takes constant time. The
source however spends O(log n) time to initialize the header with h(v). To complete the
proof of Theorem 4.3, we show:

Lemma 4.7 The memory requirement for x is O(log4 n/(log log n)2 +
log |U| log2 n/ log log n) bits.

Proof. In our scheme, every node x 6= s stores `T (x), `T (s), f(x), q(x), ~c(x), and a list of
q(x) keys. At each key k of this list we correspond a table composed of all the names of U

that collide in k, i.e., all u ∈ U such that h(u) = k, and their tree-routing label `T (u). From
Lemma 4.4, there are at most O(log n) such collisions. All together, and using Lemma 4.6,
it sums to:

O(log3 n/ log log n) + q(x)O(log n)(log |U|+ O(log2 n/ log log n)) =

O(log4 n/(log log n)2 + log |U| log2 n/ log log n)

since we have seen that q(x) = O(log n/ log log n). The source s stores an extra O(log2 n)
bits for the hash function h given by Lemma 4.4, which does not change the above com-
plexity. �

References

[1] I. Abraham, C. Gavoille, and D. Malkhi, Routing with improved
communication-space trade-off, Tech. Report RR-1330-04, LaBRI, University of Bor-
deaux 1, 351, cours de la Libération, 33405 Talence Cedex, France, July 2004.

[2] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup, Compact
name-independent routing with minimum stretch, in 16th Annual ACM Symposium on
Parallel Algorithms and Architecture (SPAA), ACM Press, 2004, pp. 20–24.

[3] M. Arias, L. Cowen, K. Laing, R. Rajaraman, and O. Taka, Compact routing
with name independence, in 15th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), ACM Press, June 2003, pp. 184–192.

19

[4] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg, Compact distributed
data structures for adaptive routing, in 21st Annual ACM Symposium on Theory of
Computing (STOC), ACM Press, May 1989, pp. 479–489.

[5] B. Awerbuch, A. B. Noy, N. Linial, and D. Peleg, Improved routing strategies
with succinct tables, Journal of Algorithms, 11 (1990), pp. 307–341.

[6] B. Awerbuch and D. Peleg, Sparse partitions, in 31th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), Oct. 1990, pp. 503–513.

[7] B. Awerbuch and D. Peleg, Routing with polynomial communication-space trade-
off, SIAM J. Discret. Math., 5 (1992), pp. 151–162.

[8] J. L. Carter and M. N. Wegman, Universal hash functions, Journal of Computer
and System Sciences, 18 (1979), pp. 143–154.

[9] L. J. Cowen, Compact routing with minimum stretch, Journal of Algorithms, 38
(2001), pp. 170–183.

[10] P. Fraigniaud and C. Gavoille, Routing in trees, in 28th International Collo-
quium on Automata, Languages and Programming (ICALP), vol. 2076 of Lecture
Notes in Computer Science, Springer, July 2001, pp. 757–772.

[11] P. Fraigniaud and C. Gavoille, A space lower bound for routing in trees, in 19th

Annual Symposium on Theoretical Aspects of Computer Science (STACS), vol. 2285
of Lecture Notes in Computer Science, Springer, Mar. 2002, pp. 65–75.

[12] C. Gavoille, Routing in distributed networks: Overview and open problems, ACM
SIGACT News - Distributed Computing Column, 32 (2001), pp. 36–52.

[13] C. Gavoille and M. Gengler, Space-efficiency of routing schemes of stretch factor
three, J. of Parallel and Distributed Computing, 61 (2001), pp. 679–687.

[14] C. Gavoille and D. Peleg, Compact and localized distributed data structures, J.
of Distributed Computing, 16 (2003), pp. 111–120. PODC 20-Year Special Issue.

[15] C. Gavoille and S. Pérennès, Memory requirement for routing in distributed
networks, in 15th Annual ACM Symposium on Principles of Distributed Computing
(PODC), ACM Press, May 1996, pp. 125–133.

[16] K. Laing, Name-independent compact routing in trees, Tech. Report 2003-02, Tufts
Univ. Dep. of Comp. Science, Nov. 2003. Also in PODC ’04 as brief announcements.

[17] R. Motwani and P. Raghavan, Randomized Algorithms, Camb Univ Press, 1995.

[18] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM Monographs
on Discrete Mathematics and Applications, 2000.

20

[19] D. Peleg and E. Upfal, A trade-off between space and efficiency for routing tables,
Journal of the ACM, 36 (1989), pp. 510–530.

[20] N. Santoro and R. Khatib, Labelling and implicit routing in networks, The Com-
puter Journal, 28 (1985), pp. 5–8.

[21] M. Thorup and U. Zwick, Approximate distance oracles, in 33rd Annual ACM
Symposium on Theory of Computing (STOC), July 2001, pp. 183–192.

[22] , Compact routing schemes, in 13th Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA), ACM Press, July 2001, pp. 1–10.

[23] P. van Emde Boas, Preserving order in a forest in less than logarithmic time and
linear space, Information Processing Letters, 6 (1977), pp. 80–82.

[24] J. van Leeuwen and R. B. Tan, Computer networks with compact routing tables,
in The Book of L, Springer-Verlag, 1986, pp. 259–273.

21

	Introduction
	Preliminaries
	Linear Communication-Space Trade-Off
	Tree cover based on Sparse Partitions
	Bounded cost name-independent tree-routing
	The name-independent routing scheme
	Bounded-cost name-independent tree-routing
	Analysis

	Single-Source Name-Independent Routing Scheme

