Amoeba-inspired Self-organizing Particle Systems BDA 2013

Shlomi Dolev, Robert Gmyr, Andréa W. Richa, and Christian Scheideler

October 14, 2013

Motivation

"Over the next few decades, two emerging technologies—microfabrication and cellular engineering—will make it possible to assemble systems incorporating myriads of information-processing units at almost no cost [...] but we have few ideas for programming them effectively. The opportunity to exploit these new technologies poses a broad conceptual challenge—the challenge of amorphous computing." [AAC⁺00]

Our goal: rigorous algorithmic research on self-organizing particle systems \rightarrow First step: appropriate model

Properties

- particles are physical entities
- particles have to stay connected
- all particles are programmed identically
- particles have local knowledge
 - no position
 - no orientation
 - only perceive immediate neighborhood
- particles have modest computational power
 - finite automata
- unlimited number of particles

A New Model

Previous models do not fit

- ► DNA computing, population protocols, ...
 → no active movement
- swarm robotics
 - \rightarrow no collisions, no connectivity
- modular robotics, metamorphic robotics

 global information, powerful particles (Turing machines)

Further considerations

- implementation should be feasible
- ▶ allow particles to make **local decisions** and act in a **distributed** fashion
- for now: **2D** and **synchronous rounds**

A New Model

Previous models do not fit

- ► DNA computing, population protocols, ...
 → no active movement
- swarm robotics
 - \rightarrow no collisions, no connectivity
- modular robotics, metamorphic robotics

 global information, powerful particles (Turing machines)

Further considerations

- implementation should be feasible
- ► allow particles to make **local decisions** and act in a **distributed** fashion
- for now: **2D** and **synchronous rounds**

- ► are placed on a **hexagonal grid**
- assume one of two shapes
- ► assume one of **six orientations**
- ▶ are in one of **finitely many states**
- ▶ have to stay **connected**

- are placed on a **hexagonal grid**
- ► assume one of **two shapes**
- ► assume one of **six orientations**
- ▶ are in one of **finitely many states**
- ► have to stay **connected**

- are placed on a **hexagonal grid**
- ► assume one of **two shapes**
- assume one of **six orientations**
- are in one of finitely many states
- ► have to stay **connected**

- are placed on a hexagonal grid
- assume one of two shapes
- assume one of **six orientations**
- are in one of **finitely many states**
- ► have to stay **connected**

- are placed on a **hexagonal grid**
- ► assume one of **two shapes**
- assume one of **six orientations**
- are in one of **finitely many states**
- ► have to stay **connected**

- are placed on a **hexagonal grid**
- assume one of two shapes
- assume one of **six orientations**
- are in one of **finitely many states**
- ► have to stay **connected**

- are placed on a hexagonal grid
- assume one of two shapes
- assume one of **six orientations**
- are in one of **finitely many states**
- ► have to stay **connected**

In every round, a particle can **change its state** and execute one of **six actions**

- 2. turn
- 3. expand
- 4. contract
- 5. duplicate
- 6. kill

In every round, a particle can **change its state** and execute one of **six actions**

1. null

2. **turn**

- 3. expand
- 4. contract
- 5. duplicate
- 6. kill

In every round, a particle can **change its state** and execute one of **six actions**

1. null

2. **turn**

- 3. expand
- 4. contract
- 5. duplicate
- 6. kill

In every round, a particle can **change its state** and execute one of **six actions**

- 2. turn
- 3. expand
- 4. contract
- 5. duplicate
- 6. kill

In every round, a particle can **change its state** and execute one of **six actions**

- 2. turn
- 3. expand
- 4. contract
- 5. duplicate
- 6. kill

In every round, a particle can **change its state** and execute one of **six actions**

- 2. turn
- 3. expand
- 4. contract
- 5. duplicate
- 6. kill

In every round, a particle can **change its state** and execute one of **six actions**

- 2. turn
- 3. expand
- 4. contract
- 5. duplicate
- 6. kill

- 1. null
- 2. turn
- 3. expand
- 4. contract
- 5. duplicate
- 6. kill

- \rightarrow a moeboid movement or
 - cell crawling

In every round, a particle can **change its state** and execute one of **six actions**

- 1. null
- 2. turn
- 3. expand
- 4. contract
- 5. duplicate

- \rightarrow amoeboid movement or
 - cell crawling

In every round, a particle can **change its state** and execute one of **six actions**

1. null

- 2. turn
- 3. expand
- 4. contract
- 5. duplicate

- \rightarrow amoeboid movement or
 - cell crawling

In every round, a particle can **change its state** and execute one of **six actions**

1. null

- 2. turn
- 3. expand
- 4. contract
- 5. duplicate

- \rightarrow amoeboid movement or
 - cell crawling

In every round, a particle can **change its state** and execute one of **six actions**

- 1. null
- 2. turn
- 3. expand
- 4. contract
- 5. duplicate

- \rightarrow amoeboid movement or
 - cell crawling
- \rightarrow cell division

- 1. null
- 2. turn
- 3. expand
- 4. contract
- 5. duplicate
- 6. kill

- \rightarrow amoeboid movement or
 - cell crawling
- \rightarrow cell division

- 1. null
- 2. turn
- 3. expand
- 4. contract
- 5. duplicate
- 6. kill

- \rightarrow amoeboid movement or
 - cell crawling
- \rightarrow cell division

- 1. null
- 2. turn
- 3. expand
- 4. contract
- 5. duplicate
- 6. kill

- \rightarrow amoeboid movement or
 - cell crawling
- \rightarrow cell division
- \rightarrow cell death

Amoeboid Movement [AE07]

Figure adopted from [AE07].

A particle uses

- its own state and shape and
- the state, shape, relative position, and relative orientation of immediate neighbors

A particle uses

- its own state and shape and
- the state, shape, relative position, and relative orientation of immediate neighbors

A particle uses

- its own state and shape and
- the state, shape, relative position, and relative orientation of immediate neighbors

A particle uses

- its own state and shape and
- ► the state, shape, relative position, and relative orientation of immediate neighbors

Moore-neighborhood for connectivity

Variants of the Model

- ► asynchronous
- ► 3D
- no duplicate and kill action
- action to kill other particles
- failing or byzantine particles
- self-stabilization
- less information from neighbors
- morphogen gradients

Research Problems

"Simple" problems

- covering problems
- shape formation problems
- bridging problems

More involved problems

macrophage problem

Bibliography

- [AAC⁺00] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. Knight, R. Nagpal, E. Rauch, G. J. Sussman, and R. Weiss. Amorphous computing. *Communications of the ACM*, 43(5):74–82, 2000.
- [AE07] R. Ananthakrishnan and A. Ehrlicher. The forces behind cell movement. International Journal of Biological Sciences, 3(5):303–317, 2007.