
The Zen of Consistent Distributed
Network Updates

Stefan Schmid

TU Berlin & Telekom Innovation Labs (T-Labs)

SDN outsources and
consolidates control
over multiple devices to
a software controller.

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

2

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller

Just a little bit of background: SDN in a Nutshell

SDN outsources and
consolidates control
over multiple devices to
a software controller.

Just a little bit of background: SDN in a Nutshell

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Global Network View

Control

Programs

Control

Programs

Control

Programs

ControllerQuestion 1:
What are the benefits?

SDN outsources and
consolidates control
over multiple devices to
a software controller.

SDN in a Nutshell

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller

Benefit 1: Decoupling! Control plane can evolve
independently of data plane: innovation at
speed of software development.
Software trumps hardware for fast
implementation and deployment.

Benefit 2: Simpler network management
through logically centralized view.
Let’s face it: many network management tasks
are inherently non-local.
Simplified formal verification.

5

SDN in a Nutshell

SDN outsources and
consolidates control
over multiple devices to
a software controller.

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller

Benefit 3: Standard API OpenFlow is about generalization!
• Generalize devices (L2-L4: switches, routers, middleboxes)
• Generalize routing and traffic engineering (not only

destination-based)
• Generalize flow-installation: coarse-grained rules and

wildcards okay, proactive vs reactive installation
• Provide general and logical network views to the

application / tenant

SDN in a Nutshell

SDN outsources and
consolidates control
over multiple devices to
a software controller.

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Global Network View

Control

Programs

Control

Programs

Control

Programs

ControllerQuestion 2:
But is this not a step backward?

And bad news for the PODC community…!

7

SDN in a Nutshell

SDN outsources and
consolidates control
over multiple devices to
a software controller.

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller

Careful! Controller is only logically
centralized but actually distributed!

8

For example: Handle
frequent events close to
data path, shield global
controllers.

lo
c

a
l

S
P

E
C

T
R

U
M e.

g.
, r

o
u

ti
n

g,
 s

p
an

n
in

g
tr

ee
e.

g.
, l

o
ca

l p
o

lic
y

en
fo

rc
er

,
el

ep
h

an
t

fl
o

w
 d

et
ec

ti
o

n

g
lo

b
a

l
Distributed Challenge 1:

What can and should be controlled locally?

9

For example: Handle
frequent events close to
data path, shield global
controllers.

lo
c

a
l

S
P

E
C

T
R

U
M e.

g.
, r

o
u

ti
n

g,
 s

p
an

n
in

g
tr

ee
e.

g.
, l

o
ca

l p
o

lic
y

en
fo

rc
er

,
el

ep
h

an
t

fl
o

w
 d

et
ec

ti
o

n

g
lo

b
a

l
Distributed Challenge 1:

What can and should be controlled locally?

Exploiting Locality in Distributed

SDN Control

Stefan Schmid and Jukka Suomela.

ACM SIGCOMM HotSDN 2013.

http://net.t-labs.tu-berlin.de/~stefan/hotsdn13loc.pdf
http://net.t-labs.tu-berlin.de/~stefan/hotsdn13loc.pdf

10

In charge

of tunnels

In charge

of ACLs

M
id

d
le

w
ar

e

C
o

m
p

o
se

&

In
st

al
l

Distributed Challenge 2:
How to deal with concurrency?

11

Problem: Conflict free, per-packet
consistent policy composition and
installation

Holy Grails: Linearizability (Safety),
Wait-freedom (Liveness)

Equivalent linearized schedule!
Need to abort p3’s “transaction”.

Distributed Challenge 2:
How to deal with concurrency?

12

Problem: Conflict free, per-packet
consistent policy composition and
installation

Holy Grails: Linearizability (Safety),
Wait-freedom (Liveness)

Equivalent linearized schedule!
Need to abort p3’s “transaction”.

Distributed Challenge 2:
How to deal with concurrency?

A Distributed and Robust SDN Control Plane for Transactional Network Updates

Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid.

34th IEEE Conference on Computer Communications (INFOCOM), Hong Kong, April 2015..

http://net.t-labs.tu-berlin.de/~stefan/infocom15.pdf

Focus of this talk:
Consistent Network Updates

Important, e.g., in Cloud

What if your traffic was not
isolated from other tenants during
periods of routine maintenance?

Example: Outages
Even technically sophisticated companies are struggling to build
networks that provide reliable performance.

We discovered a misconfiguration on this
pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed
incorrectly […] more “stuck” volumes and
added more requests to the re-mirroring
storm

Service outage was due to a series of internal
network events that corrupted router data tables

Experienced a network connectivity issue […]
interrupted the airline's flight departures,
airport processing and reservations systems

Thanks to Nate Foster for examples (at PODC 2014)!

The SDN Hello World:
MAC Learning

(Distributed Challenge 3 resp. Fail)

Distributed Computing Fail: Updating a Single Switch

Already updating a single switch from a single controller
is non-trivial!

❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

❏ h3 sends to h1:

❏ h1 sends to h3:

h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

Already updating a single switch from a single controller
is non-trivial!

❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

flood, learn (h1,p1)

❏ h3 sends to h1:

❏ h1 sends to h3:

h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2

Distributed Computing Fail: Updating a Single Switch

3

Already updating a single switch from a single controller
is non-trivial!

❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

flood, learn (h1,p1)

❏ h3 sends to h1:

forward to p1, learn (h3,p3)

❏ h1 sends to h3:

h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

Distributed Computing Fail: Updating a Single Switch

Already updating a single switch from a single controller
is non-trivial!

❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

flood, learn (h1,p1)

❏ h3 sends to h1:

forward to p1, learn (h3,p3)

❏ h1 sends to h3:

h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

Distributed Computing Fail: Updating a Single Switch

Already updating a single switch from a single controller
is non-trivial!

❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

flood, learn (h1,p1)

❏ h3 sends to h1:

forward to p1, learn (h3,p3)

❏ h1 sends to h3:

forward to p3

h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

Distributed Computing Fail: Updating a Single Switch

Already updating a single switch from a single controller
is non-trivial!

❏ Fundamental task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ H1 sends to h2:

flood, learn (h1,p1)

❏ h3 sends to h1:

forward to p1, learn (h3,p3)

❏ h1 sends to h3:

forward to p3

h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

Controller

OpenFlow
switch

Now: how to do via controller?
Install rules as you learn!
And match on host address and port.

Distributed Computing Fail: Updating a Single Switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1

h2
h3

1

2
3

Controller

OpenFlow

switch

❏ What happens when h1 sends to h2?

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1

h2
h3

1

2
3

Controller

❏ What happens when h1 sends to h2?

❏ Controller learns that h1@p1 and installs rule on switch!

OpenFlow

switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h1 sends to h2?

❏ Controller learns that h1@p1 and installs rule on switch!

OpenFlow

switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

OpenFlow

switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

❏ Switch knows destination: message forwarded to h1

❏ No controller interaction, no new rule for h2

OpenFlow

switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

❏ Switch knows destination: message forwarded to h1

❏ No controller interaction, no new rule for h2

❏ What happens when h3 sends to h2?

OpenFlow

switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

❏ Switch knows destination: message forwarded to h1

❏ No controller interaction, no new rule for h2

❏ What happens when h3 sends to h2?

❏ Flooded! Controller did not put the rule to h2!

OpenFlow

switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

❏ Switch knows destination: message forwarded to h1

❏ No controller interaction, no new rule for h2

❏ What happens when h3 sends to h2?

❏ Flooded! Controller did not put the rule to h2!

Controller however does learn about h3.
Then answer from h2 missed by
controller too: all future requests to h2
flooded?!?

OpenFlow

switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

❏ Switch knows destination: message forwarded to h1

❏ No controller interaction, no new rule for h2

❏ What happens when h3 sends to h2?

❏ Flooded! Controller did not put the rule to h2!

A bug in early controller software.
Hard to catch! A performance issue, not a consistency one

(arguably a key strength of SDN?).

OpenFlow

switch

Distributed Challenge 4: Multi-Switch Updates

insecure

Internet
secure

zone

insecure

Internet
secure

zone

Controller Platform

Distributed Challenge 4: Multi-Switch Updates

insecure

Internet
secure

zone

Controller Platform

asynchronous

Distributed Challenge 4: Multi-Switch Updates

An Asynchronous Distributed System!

Measurement studies…

He et al., ACM SOSR 2015:

without network latency

What Can Go Wrong?

insecure

Internet
secure

zone

Controller Platform

asynchronous

Example 2.1: Bypassed Waypoint

insecure

Internet
secure

zone

Controller Platform

Example 2.2: Loop

insecure

Internet
secure

zone

Controller Platform

The Spectrum of Consistency

Strong Weak

weak, transient
consistency

(loop-freedom,

waypoint enforced)
Ratul M. and Roger W., HotSDN 2014

Ludwig et al., HotNets 2014

correct network

virtualization
Ghorbani and Godfrey, HotSDN 2014

per-packet consistency
Reitblatt et al., SIGCOMM 2012

Example: Per-Packet Consistency

Definition: Any packet should either traverse the
old route, or the new route, but not a mixture

Implementation:

❏ 2-Phase installation

❏ Tagging at ingress port

tag red

red
red

Example: Per-Packet Consistency

Definition: Any packet should either traverse the
old route, or the new route, but not a mixture

Implementation:

❏ 2-Phase installation

❏ Tagging at ingress port

tag red

red
red

blue

blue

Start preparing new route!

Example: Per-Packet Consistency

Definition: Any packet should either traverse the
old route, or the new route, but not a mixture

Implementation:

❏ 2-Phase installation

❏ Tagging at ingress port

tag blue

red
red

blue

blue

And then tag newly arriving packets!

Example: Per-Packet Consistency

Definition: Any packet should either traverse the
old route, or the new route, but not a mixture

Implementation:

Disadvantages:

❏ 2-Phase installation

❏ Tagging at ingress port

tag blue

red
red

blue

blue

❏ Tagging: memory

❏ Late effects

The Spectrum of Consistency

Strong Weak

weak, transient
consistency

(loop-freedom,

waypoint enforced)
Ratul M. and Roger W., HotSDN 2014

Ludwig et al., HotNets 2014

correct network

virtualization
Ghorbani and Godfrey, HotSDN 2014

per-packet consistency
Reitblatt et al., SIGCOMM 2012

Implementing weaker transient consistency?

❏ Idea: Avoid tagging and keep consistent by
updating in multiple rounds
❏ No tagging needed

❏ Focus here: replacing rules, not adding rules

❏ No synchronous clocks / triggers

(no guarantees: not perfect, failures, …)

Controller Platform

Controller Platform

Round 1

Round 2

Going Back to Our Examples: LF Update?

insecure

Internet

secure

zone

Going Back to Our Examples: LF Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Going Back to Our Examples: LF Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

LF ok! But:
- Q1: Does a LF schedule always exist? Ideas?

Going Back to Our Examples: LF Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

LF ok! But:
- Q1: Does a LF schedule always exist? Ideas?
- Q2: What about WPE?

Going Back to Our Examples: LF Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

LF ok! But:
- Q1: Does a LF schedule always exist? Ideas?
- Q2: What about WPE? Violated in Round 1!

Going Back to Our Examples: WPE Update?

insecure

Internet

secure

zone

Going Back to Our Examples: WPE Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Going Back to Our Examples: WPE Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2: … ok but may violate LF in Round 1!

Going Back to Our Examples: Both WPE+LF?

insecure

Internet

secure

zone

Going Back to Our Examples: WPE+LF!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3:

Going Back to Our Examples: WPE+LF!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3: Is there always a WPE+LF schedule?

What about this one?

LF and WPE may conflict!

❏ Cannot update any forward edge in R1: WP

❏ Cannot update any backward edge in R1: LF

No schedule exists!

LF and WPE may conflict!

❏ Cannot update any forward edge in R1: WP

❏ Cannot update any backward edge in R1: LF

No schedule exists!
Good Network Updates for Bad Packets: Waypoint Enforcement Beyond Destination-Based Routing Policies

Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid.

13th ACM Workshop on Hot Topics in Networks (HotNets), Los Angeles, California, USA, October 2014...

http://net.t-labs.tu-berlin.de/~stefan/hotnets14update.pdf

How about this one?

How about this one?

1

❏ Forward edge after the waypoint: safe!

❏ No loop, no WPE violation

How about this one?

2

❏ Now this backward is safe too!

❏ No loop because exit through 1

1

How about this one?

1

2

3

❏ Now this is safe: ready back to WP!

❏ No waypoint violation

2

How about this one?

1

2

3

4

4

❏ Ok to update as not on the path (goes to d via)1

How about this one?

1

2

3

❏ Ok to update as not on the path (goes to d via)

4

4

1

How about this one?

1

2

3

4

4

5

❏ Ok to update as not on the path (goes to d via)1

Back to the start: What if….

1

Back to the start: What if…. also this one?!

1

1

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

❏ Update any of the 2 other forward edges? WPE

❏ What about a combination? Nope…

Back to the start: What if…. also this one?!

1

1

Back to the start: What if…. also this one?!

1

1

To update or not to update in the first round?
This is the question which leads to NP-hardness!

Remark on WPE: ACKs are not enough!

❏ I may never be able to update this edge!

❏ Packets may be waiting right before x

❏ So rounds require waiting (upper bound on latency)

x

Let‘s forget about Waypoint Enforcement for a moment:
Then loop-free update schedules always exist!

Let‘s forget about Waypoint Enforcement for a moment:
Then loop-free update schedules always exist!

Why? Trivial strategy?

Let‘s forget about Waypoint Enforcement for a moment:
Then loop-free update schedules always exist!

Why? Trivial strategy? E.g., start from end?

LF Update: Start from end…

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

1

1

2

1

2

3

Let‘s forget about Waypoint Enforcement for a moment:
Then loop-free update schedules always exist!

How many rounds are required
in the worst case?

How to update LF?

…

s dv2 v3 vi-1vi-2vi-3

How to update LF?

…

s dv2 v3 vi-1vi-2vi-3

How to update LF?

…

s dv2 v3 vi-1vi-2vi-3

❏Must update vi before vi+1

How to update LF?

…

s dv2 v3 vi-1vi-2vi-3

❏Must update vi before vi+1

How to update LF?

…

s dv2 v3 vi-1vi-2vi-3

❏Must update vi before vi+1

How to update LF?

…

s dv2 v3 vi-1vi-2vi-3

❏Must update vi before vi+1

How to update LF?

…

s dv2 v3 vi-1vi-2vi-3

❏Must update vi before vi+1

Ω(n) rounds to be loop-free!

…

s dv2 v3 vi-1vi-2vi-3

❏Must update vi before vi+1

❏ Takes Ω(n) rounds: v3 v4 v5 v6 …

However: It can be good to relax!

…

s dv2 v3 vi-1vi-2vi-3

❏ However: Topological loops may not be a problem if
they do not occur on the active (s,d) path

However: It can be good to relax!

…

s dv2 v3 vi-1vi-2vi-3

❏ However: Topological loops may not be a problem if
they do not occur on the active (s,d) pathFor this example: Only old
packets may loop here, new
packets from s go via v2 to d.

However: It can be good to relax!

…

s dv2 v3 vi-1vi-2vi-3

❏ However: Topological loops may not be a problem if they
do not occur on the active (s,d) path

❏ Schedule: (1) forward edges, (2) backward edges except
last one, (3) last backward edge

…

s dv2 v3 vi-1vi-2vi-3

…

s dv2 v3 vi-1vi-2vi-3

…

s dv2 v3 vi-1vi-2vi-3

…

s dv2 v3 vi-1vi-2vi-3

…

s dv2 v3 vi-1vi-2vi-3

…

s dv2 v3 vi-1vi-2vi-3

Update safe: no new traffic here!

Now safe too: backward path ready!

However: It can be good to relax!

…

s dv2 v3 vi-1vi-2vl-3

❏ Topological loops may not be a problem if they
do not occur on the active (s,d) path

❏ Schedule: (1) forward edges, (2) backward
edges except last one, (3) last backward edge

Relaxed LF in 3 rounds, where
Strong LF requires n rounds:
Worst possible!

Why did we consider the line only?
Model & Simplification

❏ Given old (solid) and new path
(dashed)

❏ We can focus on nodes which need
to be updated and lie on both paths
(others trivial)

❏ Can be represented as a line

❏ Convention: old path solid from left
to right

Why did we consider the line only?
Model & Simplification

❏ Given old (solid) and new path
(dashed)

❏ We can focus on nodes which need
to be updated and lie on both paths
(others trivial)

❏ Can be represented as a line

❏ Convention: old path solid from left
to right

Easy to update new nodes which
do not appear in old policy.
And just keep nodes which are
not on new path.

Good Algorithms to Schedule
(Strong) LF Updates?

Idea: Greedy

❏ Greedy: Schedule a maximum number of nodes
in each round!

❏ However, it turns out that this is bad:
❏ A single greedy round can force the best possible schedule

to go from O(1) to Ω(n) rounds

❏ Moreover, being greedy in NP-hard: a (hard) special variant
of Feedback Arc Set Problem (out-degree 2, 2 valid paths)

Less Ambitious: Algorithms for 2-Round Instances?

Less Ambitious: Algorithms for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

Less Ambitious: Algorithms for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path? F F F B B B

Less Ambitious: Algorithms for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

Old policy from left to right!

New policy from left to right!

Less Ambitious: Algorithms for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

? ?? ?

Less Ambitious: Algorithms for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

FF BB FB BF

Less Ambitious: Algorithms for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

FF BB FB

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

BF FB

Less Ambitious: Algorithms for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

Insight 2: Valid schedules
are reversible! A valid

schedule from old to new
used backward is a valid
schedule for new to old!

Less Ambitious: Algorithms for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

FF BB FB

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

BF

Insight 3: Hence in the last
round, I can safely update
all forwarding (F) edges!

For sure loopfree.
FB

Insight 2: Valid schedules
are reversible! A valid

schedule from old to new
used backward is a valid
schedule for new to old!

Less Ambitious: Algorithms for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

Insight 3: Hence in the last
round, I can safely update
all forwarding (F) edges!

For sure loopfree.

2-Round Schedule: If and only if
there are no BB edges! Then I can

update F edges in first round
and F edges in second round!

Insight 2: Valid schedules
are reversible! A valid

schedule from old to new
used backward is a valid
schedule for new to old!

Less Ambitious: Algorithms for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

Insight 3: Hence in the last
round, I can safely update
all forwarding (F) edges!

For sure loopfree.

2-Round Schedule: If and only if
there are no BB edges! Then I can

update F edges in first round
and F edges in second round!

Insight 2: Valid schedules
are reversible! A valid

schedule from old to new
used backward is a valid
schedule for new to old!

That is, FB must be in
first round, BF must be
in second round, and FF
are flexible!

What about 3 rounds?

What about 3 rounds?

❏ Structure of a 3-round schedule:

Round 1 Round 2 Round 3

F edges:

FF,FB

F edges:

FF,BF

all edges:

FF,FB,BF,BB

What about 3 rounds?

❏ Structure of a 3-round schedule:

Round 1 Round 2 Round 3

F edges:

FF,FB

F edges:

FF,BF

all edges:

FF,FB,BF,BB

Round 1 Round 2 Round 3

FB BFBB

WLOG

Boils
down to: FF

??

W.l.o.g., can do FB
in R1 and BF in R3.

Proof

Claim: If there exists 3-
round schedule, then also
one where FB are only
updated in Round 1.

Reason: Can move FB to
first round!

FF FB FB FB BB BF BF

S1: as early

as possible

S2: as late

as possible

R1 R2

R2 R3

Proof

Claim: If there exists 3-
round schedule, then also
one where FB are only
updated in Round 1.

Reason: Can move FB to
first round!

FF FB FB FB BB BF BF

S1: as early

as possible

S2: as late

as possible

R1 R2

R2 R3

Fowarding edges do not
introduce loops in G(t=1).

Proof

Claim: If there exists 3-
round schedule, then also
one where FB are only
updated in Round 1.

Reason: Can move FB to
first round!

FF FB FB FB BB BF BF

S1: as early

as possible

S2: as late

as possible

R1 R2

R2 R3

Updating edges earlier
makes G(t=2) only sparser,
so will still work in 3 rounds.

Fowarding edges do not
introduce loops in G(t=1).

Proof

Claim: If there exists 3-
round schedule, then also
one where FB are only
updated in Round 1.

Reason: Can move FB to
first round!

FF FB FB FB BB BF BF

S1: as early

as possible

S2: as late

as possible

R1 R2

R2 R3

Updating edges earlier
makes G(t=2) only sparser,
so will still work in 3 rounds.

Fowarding edges do not
introduce loops in G(t=1).

… but moving FF nodes across BB-
node-Round-2 is tricky! Why?

Similar argument for BF nodes (for R2 and R3)…

NP-hardness

A hard decision problem: when to update FF?

❏ We know: BB node v6 can only be updated in R2

BB

NP-hardness

A hard decision problem: when to update FF?

❏ We know: BB node v6 can only be updated in R2

❏ Updating FF-node v4 in R1 allows to update BB node v6 in R2

Exit from loop

BB

NP-hardness

A hard decision problem: when to update FF?

❏ We know: BB node v6 can only be updated in R2

❏ Updating FF-node v4 in R1 allows to update BB node v6 in R2

❏ Updating FF-node v3 as well in R1 would be bad: cannot update
v6 in next round: potential loop

No exit from loop!

BB

NP-hardness

A hard decision problem: when to update FF?

❏ We know: BB node v6 can only be updated in R2

❏ Updating FF-node v4 in R1 allows to update BB node v6 in R2

❏ Updating FF-node v3 as well in R1 would be bad: cannot update
v6 in next round: potential loop

No exit from loop!

BB

NP-hardness

A hard decision problem: when to update FF?

❏ We know: BB node v6 can only be updated in R2

❏ Updating FF-node v4 in R1 allows to update BB node v6 in R2

❏ Updating FF-node v3 as well in R1 would be bad: cannot update
v6 in next round: potential loop

❏ Node v5 is B and cannot be updated in R1

BB

NP-hardness

❏ Reduction from a 3-SAT version where
variables appear only a small number of times

❏ Variable x appearing px times positively and nx

times negatively is replaced by:

❏ Gives low-degree requirements!

❏ Types of clauses

❏ Assignment clause:

❏ Implication clause:

❏ Exclusive Clause:

NP-hardness

❏ Reduction from a 3-SAT version where
variables appear only a small number of times

❏ Variable x appearing px times positively and nx

times negatively is replaced by:

❏ Gives low-degree requirements!

❏ Types of clauses

❏ Assignment clause:

❏ Implication clause:

❏ Exclusive Clause:

We need a
low degree…

Connecting clones:
consistent value for
original variable.

Example: Gadget for Exclusive Clause

❏ Updating xl prevents Xl update and vice versa

❏ BB nodes v2 and v4 need to be updated in R2 and will
introduce a cycle otherwise

❏ So only one of the two can be updated in R1

Example: Gadget for Exclusive Clause

❏ Updating xl prevents Xl update and vice versa

❏ BB nodes v2 and v4 need to be updated in R2 and will
introduce a cycle otherwise

❏ So only one of the two can be updated in R1

Example: Gadget for Exclusive Clause

❏ Updating xl prevents Xl update and vice versa

❏ BB nodes v2 and v4 need to be updated in R2 and will
introduce a cycle otherwise

❏ So only one of the two can be updated in R1

Example: Gadget for Clause

❏ Need to update (satisfy)
at least one of the
literals in the clause…

❏ … so to escape the
potential loop

Example: Gadget for Clause

❏ Need to update (satisfy)
at least one of the
literals in the clause…

❏ … so to escape the
potential loop

NP-hardness

❏ Eventually everything has to be connected…

❏ … to form a valid path

Relaxed Loopfreedom

❏ Recall: relaxed loop-freedom can reduce number of
rounds by a factor O(n)

❏ But how many rounds are needed for relaxed loop-
free update in the worst case?

❏ We don’t know…

❏ … what we do know: next slide

Peacock: Relaxed Updates in O(log n) Rounds

First some concepts:

❏ Node merging: a node which is updated is irrelevant
for the future, so merge it with subsequent one

❏ Directed tree: while initial network consists of two
directed paths (in-degree=out-degree=2), during
update rounds, situation can become a directed tree

❏ in-degree can increase due to merging

❏ dashed in- and out-degree however stays one

Example

Initially: Two
valid paths!

After updating v4.

Example

Initially: Two
valid paths!

After updating v4.

v4 irrelevant,
can merge

Example

Initially: Two
valid paths!

After updating v4.

In-degree
now 2: to v4

and v9.

Example

Initially: Two
valid paths!

After updating v4.

Forward and
backward edges
now defined wrt

tree!

Example

Initially: Two
valid paths!

After updating v4.

New type of edge:

horizontal edge!

Ideas of Peacock Algorithm

❏ Rounds come in pairs: Try to update (and hence
merge) as much as possible in every other round

❏ Round 1 (odd rounds): Shortcut

❏ Move source close to destination

❏ Generate many «independent subtrees» which are easy to
update!

❏ Round 2 (even rounds): Prune

❏ Update independent subtrees

❏ Brings us back to a chain!

Ideas of Peacock Algorithm

❏ Rounds come in pairs: Try to update (and hence
merge) as much as possible in every other round

❏ Round 1 (odd rounds): Shortcut

❏ Move source close to destination

❏ Generate many «independent subtrees» which are easy to
update!

❏ Round 2 (even rounds): Prune

❏ Update independent subtrees

❏ Brings us back to a chain!

Don‘t update all FF edges!

Peacock in Action

138

Shortcut Prune PruneShortcut

Peacock in Action

139

Shortcut Prune PruneShortcut

Greedily choose
far-reaching
(independent)
forward edges.

update

Peacock in Action

140

Shortcut Prune PruneShortcut
R1 generated
many nodes in
branches which
can be updated
simultaneously!

update

Peacock in Action

141

Shortcut Prune PruneShortcut

Line re-established!
(all merged with a
node on the s-d-path)

Peacock in Action

142

Shortcut Prune PruneShortcutPeacock orders nodes wrt to distance: edge
of length x can block at most 2 edges of

length x, so distance 2x.

Peacock in Action

143

Shortcut Prune PruneShortcut

At least 1/3 of nodes merged in each round
pair (shorter s-d path): logarithmic runtime!

Peacock in Action

144

Shortcut Prune PruneShortcut

Peacock in Action

145

Shortcut Prune PruneShortcut

Question:
When does Peacock terminate?

Peacock in Action

146

Shortcut Prune PruneShortcut

Question:
When does Peacock terminate?

Answer:
Only in odd rounds: then s-d merged

Why not update two non-independent edges?

…

s

short edge looooong edge

❏ Don’t update all FF edges: A short edge may not
reduce distance to source if it jumps over a long edge

…

s not on s-d
path

independent edge

❏ Can update all fwd edges starting in interval

Conclusion

• SDN offers fundamental distributed problems

• So far we know:

• Strong LF:

•Greedy arbitrarily bad (up to n rounds) and NP-hard

• 2 rounds easy

• 3 rounds hard

• Relaxed LF:

• Peacock solves any scenario in O(log n) rounds

• Computational results indicate that # rounds grows

• LF and WPE may conflict

Thank you!

And thanks to co-authors: Arne Ludwig, Jan Marcinkowski

as well as Marco Canini, Damien Foucard, Petr Kuznetsov, Dan Levin, Matthias Rost, Jukka Suomela

and more recently Saeed Amiri, Szymon Dudycz, Felix Widmaier

Own References

Scheduling Loop-free Network Updates: It's Good to Relax!

Arne Ludwig, Jan Marcinkowski, and Stefan Schmid.

ACM Symposium on Principles of Distributed Computing (PODC),

Donostia-San Sebastian, Spain, July 2015.

A Distributed and Robust SDN Control Plane for Transactional Network

Updates

Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid.

34th IEEE Conference on Computer Communications (INFOCOM), Hong

Kong, April 2015.

Good Network Updates for Bad Packets: Waypoint Enforcement Beyond

Destination-Based Routing Policies

Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid.

13th ACM Workshop on Hot Topics in Networks (HotNets), Los Angeles,

California, USA, October 2014.

http://net.t-labs.tu-berlin.de/~stefan/podc15.pdf
http://net.t-labs.tu-berlin.de/~stefan/infocom15.pdf
http://net.t-labs.tu-berlin.de/~stefan/hotnets14update.pdf

