Tutorial on Chemical Reaction Networks

Part II

DISC' 14

David Soloveichik

Distributed Algorithms in Biological Regulatory Networks

Molecular Implementation of CRNs with Strand Displacement Cascades

David Soloveichik

(3 Species) Approximate Majority

$$
\begin{aligned}
& X+Y \rightarrow X+B \\
& X+Y \rightarrow B+Y \\
& X+B \rightarrow X+X \\
& Y+B \rightarrow Y+Y
\end{aligned}
$$

$\mathrm{n}=$ total number of molecules $(\mathrm{X}, \mathrm{Y}, \mathrm{B})$

- Fast/efficient: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ interactions to converge (optimal)
- Robust: above a threshold, the initial majority wins whp; even with some "byzantine agents"
[Angluin, Aspnes, Eisenstat DISC’07]

(3 Species) Approximate Majority

$$
\begin{aligned}
& X+Y \rightarrow X+B \\
& X+Y \rightarrow B+Y \\
& X+B \rightarrow X+X \\
& Y+B \rightarrow Y+Y
\end{aligned}
$$

[Angluin, Aspnes, Eisenstat DISC’07]

Example:Approximate Majority in a Biological Regulatory Network

"Epigenetic Memory by Nucleosome Modification"

silenced

Dodd, Micheelsen, Sneppen, Thon, Cell I29, 8I3-822 (2007)

How Can We Identify CRN Algorithms in Biology?

Does a biologically messy network X "implement" some ideal algorithm Y ?

" "Hairball"

How Can We Identify CRN Algorithms in Biology?

Intermediary Species

Symmetries

Model Reduction

 (vast area)[Cardelli,"Morphisms of reaction networks that couple structure to function" 2014]

Approximate Majority Emulation Zoo

Distributed Algorithms in Biological Regulatory Networks

Molecular Implementation of CRNs with Strand Displacement Cascades

David Soloveichik

Strand Displacement Cascades

- DNA used in an entirely new way (NOT genes)

Nucleotides

Basics of DNA

A Adenine
T Thymine
C Cytosine

G Guanine

strand $2=($ strand I$)$ *
C -G

Basics of DNA

Multi-stranded Complex

Multi-stranded Complex


```
1 = CCGGGAA
2 = GCCAGTGCTCTACACA
domains
3 = CTAATGACAGTCTGGC
```


DNA = Commodity Chemical

Kindy send me the following strands:
strand1: 5^{\prime}-ATTTGAGCCCTATCCATAACATTCCTGCTTA-3' strand2: 5^{\prime}-TAAGCAGGAATGTTATGGATAGGGCTCAAATH-3'
idtdna.com

Same day synthesis

Strand Displacement Cascades

Complexes Should Contain Two Types of Domains: Short and Long

short domains: < 8 nucleotides
bind weakly
long domains: > 15 nucleotides
bind strongly

Design Complexes To Obey 3 Rules

Rule I:Bind

Example

single-stranded
complementary
domains

Design Complexes To Obey 3 Rules

Rule I:Bind

Example

Design Complexes To Obey 3 Rules

Rule I: Bind

Two single-stranded complementary
domains can bind

Example

Design Complexes To Obey 3 Rules

Rule 2: Release

Example

blue strand bound by only
a short domain

Design Complexes To Obey 3 Rules

Rule 2: Release

Example

Design Complexes To Obey 3 Rules

Rule 2: Release

Any strand bound by only a short domain can release

Example

Design Complexes To Obey 3 Rules

Rule 3: Displace

Example

Design Complexes To Obey 3 Rules

Rule 3: Displace

Example

Design Complexes To Obey 3 Rules

Rule 3: Displace

Example

Design Complexes To Obey 3 Rules

Rule 3: Displace

A domain can displace an identical domain of another strand, if neighboring domains are already bound

Example

Design Complexes To Obey 3 Rules

rate designable by short domain sequences (over 6 orders of magnitude)

Strand Displacement Cascades Example: Amplifier

generate a lot of output Y if even a little of input X is present input $X \quad \stackrel{1}{\longrightarrow}$

Strand Displacement Cascades Example: Amplifier

generate a lot of output Y if even a little of input X is present input $X \quad . .0 .0 \xrightarrow{ }$

Strand Displacement Cascades Example: Amplifier

generate a lot of output Y if even a little of input X is present

Strand Displacement Cascades Example: Amplifier

generate a lot of output Y if even a little of input X is present

Strand Displacement Cascades Example: Amplifier

generate a lot of output Y if even a little of input X is present

Strand Displacement Cascades Example: Amplifier

generate a lot of output Y if even a little of input X is present

Strand Displacement Cascades Example: Amplifier

generate a lot of output Y if even a little of input X is present
$2 \quad 3$

Strand Displacement Cascades Example: Amplifier

generate a lot of output Y if even a little of input X is present
$2 \quad 3$

Strand Displacement Cascades Example: Amplifier

generate a lot of output Y if even a little of input X is present

Strand Displacement Cascades Example: Amplifier

generate a lot of output Y if even a little of input X is present

Strand Displacement Cascades Example: Amplifier

generate a lot of output Y if even a little of input X is present

Strand Displacement Cascades Example: Amplifier

generate a lot of output Y if even a little of input X is present

Strand Displacement Cascades Example: Amplifier

generate a lot of output Y if even a little of input X is present

Strand Displacement Cascades Example: Amplifier

generate a lot of output Y if even a little of input X is present

Strand Displacement Cascades Example: Amplifier

generate a lot of output Y if even a little of input X is present
23
$\xrightarrow{4} \quad 5$ output Y

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

$$
X \rightarrow X+Y
$$

before

Wet-lab implementation of amplifier

 generate a lot of output Y if even a little of input X is present

Formal Analysis of Strand Displacement Cascades

DSD: formal language for describing and modeling strand displacement cascades
http://lepton.research.microsoft.com/webdna/
$<1>[2]:<6>\left[3^{\wedge} 4\right]: 5^{\wedge *}$
$=$

$$
\frac{2}{2^{*}} \frac{3}{3^{*}} 4^{*} \frac{}{5^{*}}
$$

Formal Analysis of Strand Displacement Cascades

DSD: formal language for describing and modeling strand displacement cascades
http://lepton.research.microsoft.com/webdna/

Diverse Design Possibilities Make for a Game

(Beta version)

Rich Snider, Dmitry Danilov and Zoran Popovic, in collaboration with Georg Seelig, David Baker http://nanocrafter.org/

- Foldlt team
- crowd-sourcing

Strand displacement has stimulated multiple research directions in the wet-lab

Strand displacement has stimulated multiple research molecular directions in the wet-lab

logic circuits

- Largest autonomous biochemical networks built from scratch

Qian, Winfree, Science 2011

Strand displacement has stimulated multiple research

molecular
logic circuits

- Largest autonomous biochemical networks built from scratch

Qian, Winfree, Science 2011
directions in the wet-lab molecular artificial neural networks

- Biochemical system doing inference

Qian, Winfree, Bruck Nature 2011

Strand displacement has stimulated multiple research

molecular
logic circuits

- Largest autonomous biochemical networks built from scratch

Qian, Winfree, Science 2011
controlling assembly of nanoscale structures

- Prescribed nanoscale structures seen under atomic force microscope
 molecular artificial neural networks

- Biochemical system doing inference

Qian, Winfree, Bruck Nature 2011

Strand displacement has stimulated multiple research

molecular
logic circuits

- Largest autonomous biochemical networks built from scratch

Qian, Winfree, Science 2011
controlling assembly of nanoscale structures

- Prescribed nanoscale structures seen under atomic force microscope

- Biochemical system doing inference

Qian, Winfree, Bruck Nature 2011
strand displacement in mammalian cells

- Logic on biological signals

[^0]
Strand displacement cascades are complete for chemical reaction networks

Soloveichik, Seelig,Winfree,"DNA as a Universal Substrate for Chemical Kinetics", PNAS, 2010

formally definable CRNs

Strand displacement cascades are complete for chemical reaction networks

Soloveichik, Seelig,Winfree,"DNA as a Universal Substrate for Chemical Kinetics", PNAS, 2010

Strand Displacement Implementation of the Approximate Majority Network

Strand Displacement Implementation

Strand Displacement Implementation of the Approximate Majority Network

Strand Displacement Implementation

Chen, Dalchau, Srinivas, Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 20 I3

Strand Displacement Implementation of the Approximate Majority Network

 \(X+Y \rightarrow B+Y\)
 \(X+Y \rightarrow X+B\)
 $B+X \rightarrow X+X$
$B+Y \rightarrow Y+Y$
Ideal

Strand Displacement Implementation

\qquad

Test tube

Chen, Dalchau, Srinivas, Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 20 I3

Every goal reaction corresponds to a set of implementation reactions

$$
\begin{array}{r}
X 3+X 4 \xrightarrow{k_{1}} X 5 \\
X 5 \xrightarrow{k_{2}} X 1 \\
X 1+X 2 \xrightarrow{k_{3}} X 3
\end{array}
$$

Every goal reaction corresponds to a set of implementation reactions

How can you tell that an implementation of a reaction is correct? Can be tricky!

Goal reactions Implementation

$$
A \rightarrow B+C \quad \begin{aligned}
& A \rightarrow i l+B \\
& i l+B \rightarrow A \\
& i l \rightarrow C
\end{aligned}
$$

How can you tell that an implementation of a reaction is correct? Can be tricky!

Goal reactions Implementation

I. $A \rightarrow B+C-$ I.I. $A \rightarrow i l+B$
I.2. $\mathrm{il}+\mathrm{B} \rightarrow \mathrm{A}$
1.3. il $\rightarrow \mathrm{C}$
2. $B+D \rightarrow B+E$
3. $A+E \rightarrow F$
[Shin,Thachuk,Winfree,VEMDP 2014]

How can you tell that an implementation of a reaction is correct? Can be tricky!

Goal reactions
Implementation
Ex. Error
\{1 A, 1 D $\}$
I. $A \rightarrow B+C-$ I.I. $A \rightarrow i I+B$ 1.2. il $+B \rightarrow A$
I.3. il $\rightarrow C$
2. $B+D \rightarrow B+E$
3. $A+E \rightarrow F$
[Shin,Thachuk,Winfree,VEMDP 2014]

How can you tell that an implementation of a reaction is correct? Can be tricky!

Goal reactions Implementation
I. $A \rightarrow B+C-$ I.I. $A \rightarrow i l+B$
l.2. il $+B \rightarrow A$
l.3. il $\rightarrow C$
2. $B+D \rightarrow B+E$
3. $A+E \rightarrow F$
[Shin,Thachuk,Winfree,VEMDP 2014]

Ex. Error
\{1 A, 1 D $\}$
$1.1 \Downarrow$
\{1 il, 1 B, 1 D$\}$
$2 \Downarrow$
\{1 il, 1 B, 1 E \}
$1.2 \Downarrow$
$\{1 \mathrm{~A}, 1 \mathrm{E}\}$
$3 \Downarrow$
$\{1 F\}$

Acknowledgements

Adam Arkin
Luca Cardelli
Ho-Lin Chen
Yuan-Jyue Chen
Matthew Cook
David Doty
Manoj Gopalkrishnan

Lulu Qian
PaulW.K. Rothemund Georg Seelig
Niranjan Srinivas
Erik Winfree
Damien Woods
David Zhang

UCSF Center for Systems \& Synth Bio Winfree group (Caltech)
Seelig group (UW)

[^0]: Hemphill, Deiters J Am Chem Soc 2013

