Tutorial on Chemical Reaction Networks Part II

> DISC'14 David Soloveichik

Distributed Algorithms in Biological Regulatory Networks

Molecular Implementation of CRNs with Strand Displacement Cascades

David Soloveichik

(3 Species) Approximate Majority

 $X + Y \rightarrow X + B$ $X + Y \rightarrow B + Y$ $X + B \rightarrow X + X$ $Y + B \rightarrow Y + Y$

n = total number of molecules (X,Y,B)

- Fast/efficient: O(n log n) interactions to converge (optimal)
- Robust: above a threshold, the initial majority wins whp; even with some "byzantine agents"

[Angluin, Aspnes, Eisenstat DISC'07]

(3 Species) Approximate Majority

[Angluin, Aspnes, Eisenstat DISC'07]

Example: Approximate Majority in a Biological Regulatory Network

Dodd, Micheelsen, Sneppen, Thon, Cell 129, 813-822 (2007)

How Can We Identify CRN Algorithms in Biology?

Does a biologically messy network X "implement" some ideal algorithm Y?

How Can We Identify CRN Algorithms in Biology?

CRN Morphisms

[Cardelli, "Morphisms of reaction networks that couple structure to function" 2014]

Approximate Majority Emulation Zoo

Slide credit: Luca Cardelli

Distributed Algorithms in Biological Regulatory Networks

Molecular Implementation of CRNs with Strand Displacement Cascades

David Soloveichik

C — G

Basics of DNA

Multi-stranded **Complex**

Multi-stranded **Complex**

- 1 = CCGGGAA
- 2 = GCCAGTGCTCTACACA
- 3 = CTAATGACAGTCTGGC

DNA = Commodity Chemical

Strand Displacement Cascades Complexes Should Contain Two Types of Domains: Short and Long

Rule I: Bind

Rule I: Bind

Rule I: Bind

Two single-stranded complementary domains can **bind**

Rule 2: Release

Rule 2: Release

Rule 2: Release

Any strand bound by only a short domain can **release**

Rule 3: Displace

Rule 3: Displace

Rule 3: Displace

Rule 3: Displace A domain can **displace** an identical domain of another strand, *if neighboring domains are already bound*

Based on: Zhang, Turberfield, Yurke, Winfree, Science 2007

Wet-lab implementation of amplifier

Formal Analysis of Strand Displacement Cascades

DSD: formal language for describing and modeling strand displacement cascades

Formal Analysis of Strand Displacement Cascades

DSD: formal language for describing and modeling strand displacement cascades

http://lepton.research.microsoft.com/webdna/

Diverse Design Possibilities Make for a Game

(Beta version) Rich Snider, Dmitry Danilov and Zoran Popovic, in collaboration with Georg Seelig, David Baker http://nanocrafter.org/

- FoldIt team
- crowd-sourcing

Strand displacement has stimulated multiple research directions in the wet-lab

Strand displacement has stimulated multiple research molecular directions in the wet-lab

• Largest autonomous biochemical networks built from scratch

Qian, Winfree, Science 2011

Strand displacement has stimulated multiple research molecular directions in the wet-lab molecular artificia

directions in the wet-lab molecular artificial neural networks

• Largest autonomous biochemical networks built from scratch

Qian, Winfree, Science 2011

• Biochemical system doing inference

Qian, Winfree, Bruck Nature 2011

Strand displacement has stimulated multiple research

directions in the wet-lab molecular artificial neural networks

molecular

• Largest autonomous biochemical networks built from scratch

Qian, Winfree, Science 2011

• Biochemical system doing inference

Qian, Winfree, Bruck Nature 2011

controlling assembly of nanoscale structures

• Prescribed nanoscale structures seen under atomic force microscope

Yin, Choi, Calvert, Yurke, Pierce Nature 2008

Strand displacement has stimulated multiple research

directions in the wet-lab molecular artificial neural networks

molecular

• Largest autonomous biochemical networks built from scratch

Qian, Winfree, Science 2011

controlling assembly of nanoscale structures

• Prescribed nanoscale structures seen under atomic force microscope

Yin, Choi, Calvert, Yurke, Pierce Nature 2008

• Biochemical system doing inference

Qian, Winfree, Bruck Nature 2011

strand displacement in mammalian cells

• Logic on biological signals

Hemphill, Deiters J Am Chem Soc 2013

Strand displacement cascades are complete for chemical reaction networks

Soloveichik, Seelig, Winfree, "DNA as a Universal Substrate for Chemical Kinetics", PNAS, 2010

formally definable CRNs

Strand displacement cascades are complete for chemical reaction networks

Soloveichik, Seelig, Winfree, "DNA as a Universal Substrate for Chemical Kinetics", PNAS, 2010

Strand Displacement Implementation of the Approximate Majority Network

Goal: Approximate Majority

 $X + Y \rightarrow B + Y$ $X + Y \rightarrow X + B$ $B + X \rightarrow X + X$ $B + Y \rightarrow Y + Y$

Strand Displacement Implementation

+5+5+00	-1-24	\leftrightarrow	\$191909	+1+1+0+	1.8	\leftrightarrow	\$5+++2+	
+1+1+0+		\leftrightarrow	+3+1+0+	+000000		\leftrightarrow	'esessese'	
+1+1+0+	1.8.	\leftrightarrow	+5+1+2+	-101000		\leftrightarrow	No.ocoso	
+>+>+>+>+		\leftrightarrow	<i>********</i>	+1+1+2+	4.1.	\leftrightarrow	+5+1+2+	

Strand Displacement Implementation of the Approximate Majority Network

Chen, Dalchau, Srinivas, Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013

Strand Displacement Implementation of the Approximate Majority Network

Chen, Dalchau, Srinivas, Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013

Every goal reaction corresponds to a set of implementation reactions

 $\begin{array}{c} X3 + X4 \xrightarrow{k_1} X5 \\ X5 \xrightarrow{k_2} X1 \\ X1 + X2 \xrightarrow{k_3} X3 \end{array}$

Every goal reaction corresponds to a set of implementation reactions

How can you tell that an implementation of a reaction is correct? Can be tricky!

Goal reactions Implementation

[Shin, Thachuk, Winfree, VEMDP 2014]

How can you tell that an implementation of a reaction is correct? Can be tricky!

Goal reactions Implementation

I.
$$A \rightarrow B + C$$

I.I. $A \rightarrow iI + B$
I.2. $iI + B \rightarrow A$
I.3. $iI \rightarrow C$

2. $B + D \rightarrow B + E$

3. $A + E \rightarrow F$

[Shin, Thachuk, Winfree, VEMDP 2014]

How can you tell that an implementation of a reaction is correct? Can be tricky!

Goal reactions Implementation

 $I. A \rightarrow B + C \qquad I.I. A \rightarrow iI + B$ $1.2. \quad \text{il} + B \rightarrow A \\ 1.3. \quad \text{il} \rightarrow C$

2. $B + D \rightarrow B + E$

3. $A + E \rightarrow F$

[Shin, Thachuk, Winfree, VEMDP 2014]

Ex. Error {1 A, 1 D}

[Shin, Thachuk, Winfree, VEMDP 2014]

Acknowledgements

Adam Arkin Luca Cardelli Ho-Lin Chen Yuan-Jyue Chen Matthew Cook David Doty Manoj Gopalkrishnan Lulu Qian Paul W.K. Rothemund Georg Seelig Niranjan Srinivas Erik Winfree Damien Woods David Zhang

UCSF Center for Systems & Synth Bio Winfree group (Caltech) Seelig group (UW)

NSF MPP grant

DISC'14

CI Fellows

