
Tutorial on Chemical
Reaction Networks

David Soloveichik

Part II

DISC’14

Molecular Implementation of CRNs
with Strand Displacement Cascades

Outline

Distributed Algorithms in Biological
Regulatory Networks

David Soloveichik

X YB

X + Y → X + B
X + Y → B + Y
X + B → X + X
Y + B → Y + Y

(3 Species) Approximate Majority

[Angluin, Aspnes, Eisenstat DISC’07]

• Fast/efficient: O(n log n) interactions to converge (optimal)

n = total number of molecules (X, Y, B)

• Robust: above a threshold, the initial majority wins whp;
even with some “byzantine agents”

X YB

X + Y → X + B
X + Y → B + Y
X + B → X + X
Y + B → Y + Y

(3 Species) Approximate Majority

[Angluin, Aspnes, Eisenstat DISC’07]

• Fast/efficient: O(n log n) interactions to converge (optimal)

n = total number of molecules (X, Y, B)

• Robust: above a threshold, the initial majority wins whp;
even with some “byzantine agents” time (au)

co
un

t

20 40 60 80 100

200

400

600

800

1000

X

B
Y

start: X=550, Y=450

co
un

t

time (au)
20 40 60 80 100

200

400

600

800

1000
X

B
Y

start: X=700, Y=300

Example simulations:

Dodd, Micheelsen, Sneppen, Thon, Cell 129, 813-822 (2007)

methylated unmodified acetylated

Example: Approximate Majority in a
Biological Regulatory Network

X YB=
“Epigenetic Memory

by Nucleosome
Modification”

➔
?

X YB

“Hairball”

How Can We Identify CRN Algorithms in Biology?

 Does a biologically messy network X “implement”
some ideal algorithm Y?

How Can We Identify CRN Algorithms in Biology?

Intermediary Species

Symmetries CRN Morphisms

Model Reduction
(vast area)

[Cardelli, “Morphisms of reaction networks that couple structure to function” 2014]

Slide credit: Luca Cardelli

Molecular Implementation of CRNs
with Strand Displacement Cascades

Outline

Distributed Algorithms in Biological
Regulatory Networks

David Soloveichik

• DNA used in an entirely new
way (NOT genes)

Strand Displacement Cascades

A
T
C
G

Thymine

Guanine

Adenine

Cytosine

A

C

T

G

Binding

strand 1

strand 2=(strand 1)*

Basics of DNANucleotides

Basics of DNA

T C GG C AT AA C TG

Double Stranded

Single Stranded

Multi-stranded Complex

Multi-stranded Complex

1

1*

2
3

2

3*

domains
1
2
3

= CCGGGAA

= GCCAGTGCTCTACACA

= CTAATGACAGTCTGGC

DNA = Commodity Chemical
Cost: ~50 cents / nucleotide

~$50 total

Same day synthesis

>1015 molecules

idtdna.com

Complexes Should Contain Two Types of Domains:
Short and Long

1
3

2

2*1*

4

short domains: < 8 nucleotides

long domains: > 15 nucleotides

22
3

3*1*
bind weakly

bind strongly

Strand Displacement Cascades

Rule 1: Bind

Example

1*

1

single-stranded
complementary

domains

Design Complexes To Obey 3 Rules

Rule 1: Bind

Example

1*

1

Design Complexes To Obey 3 Rules

Rule 1: Bind

Example

1*

1

Two single-stranded complementary
domains can bind

Design Complexes To Obey 3 Rules

Rule 2: Release

Example

1

1*

blue strand bound by only
a short domain

Design Complexes To Obey 3 Rules

Rule 2: Release

Example

1

1*

Design Complexes To Obey 3 Rules

Rule 2: Release

Example

Any strand bound by only a
short domain can release

1

1*

Design Complexes To Obey 3 Rules

Rule 3: Displace

Example

1

1*

2

2

2*

identical domains,
one bound, one free

Design Complexes To Obey 3 Rules

Rule 3: Displace

Example

1

1*

2

2

2*

already bound

Design Complexes To Obey 3 Rules

Rule 3: Displace

Example

1

1*

2

2

2*

Design Complexes To Obey 3 Rules

Rule 3: Displace

Example

1

1*

A domain can displace an identical
domain of another strand, if neighboring
domains are already bound

2

2

2*

Design Complexes To Obey 3 Rules

Bind Release Displace

1*

1

1

1*

1
2

2

2*1*

Design Complexes To Obey 3 Rules

rate designable by
short domain sequences

(over 6 orders of magnitude)

3 42

1 2

5432

1* 2* 3* 4*

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

lo
ts

 o
f t

he
se

input X

B

A

Based on: Zhang, Turberfield, Yurke, Winfree, Science 2007

3 42

1 2

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

input X

5432

1* 2* 3* 4*

3 42

1

2

5432

1* 2* 3* 4*

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

3 42

1

2

5432

1* 2* 3* 4*

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

3 42

1 2 543

2

1* 2* 3* 4*

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

3 42

1 2 543

2

1* 2* 3* 4*

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

3 42

1 2 54

32

1* 2* 3* 4*

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

3 42

1 2 54

32

1* 2* 3* 4*

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

3

42

1 2 54

32

1* 2* 3* 4*

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

3

42

1 2 54

32

1* 2* 3* 4*

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

3 4

2

1 2

54

32

1* 2* 3* 4*

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

output Y

3 4

2

1 2

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

1* 2* 3* 4*

54

32

output Y

3 421
2

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

54

32

output Y

1* 2* 3* 4*

3 421
2

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

54

32

output Y

1* 2* 3* 4*

3 42

1 2

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

54

32

output Y

1* 2* 3* 4*

input X
regenerated

1 2

input X

3 42

5432

1* 2* 3* 4*

1 2

input X

54

output Y

3 42

1* 2* 3* 4*

32

X→X+Y

A

B

Waste

Waste

Strand Displacement Cascades Example: Amplifier
generate a lot of output Y if even a little of input X is present

before after

varying amount
of input strand

Zhang, Turberfield, Yurke, Winfree, Science 2007

Wet-lab implementation of amplifier

more output
than input
produced

N
or

m
al

ize
d

ou
tp

ut

3 rules model

measurement

generate a lot of output Y if even a little of input X is present

DSD: formal language for describing and modeling strand displacement cascades

 <1>[2]:<6>[3^ 4]:5^*
=

http://lepton.research.microsoft.com/webdna/

Formal Analysis of Strand Displacement Cascades

Phillips, Cardelli, Journal of Royal Society Interface, 2009

DSD: formal language for describing and modeling strand displacement cascades

 <1>[2]:<6>[3^ 4]:5^*
=

http://lepton.research.microsoft.com/webdna/

Formal Analysis of Strand Displacement Cascades

Phillips, Cardelli, Journal of Royal Society Interface, 2009

formal semantics

http://nanocrafter.org/

Rich Snider, Dmitry Danilov and Zoran Popovic,
in collaboration with Georg Seelig, David Baker

Diverse Design Possibilities Make for a Game

• FoldIt team

• crowd-sourcing
(Beta

version)

strand
displacement

cascades

Strand displacement has stimulated multiple research
directions in the wet-lab

(fig. S5). In all tested cases, the output went to
the correct ON or OFF state. A three-OR cascade
(fig. S6, A and B) and a four-OR cascade (fig. S6,
C and D) also worked. The delay time required
for circuit computation increased linearly with
the number of layers (Fig. 3A). However, once
the threshold for the output gate was exceeded,
the signal increased at roughly the same rate as
in the smaller circuit (Fig. 3B). In a circuit with
four layers, two AND gates, and three OR gates,
with 12 different combinations of inputs, the
output went to clear and correct ON or OFF
states in 8 hours (Fig. 3C).

Because integrating gates support multiple
inputs and amplifying gates support multiple
outputs, logic gates built from a pair of them can
easily support fan-in and fan-out. In a circuit with
a four-input OR gate, only when all inputs from
the upstream OR gates were OFF did the output

stay OFF (Fig. 3D). In a circuit with a four-output
OR gate, each output copied the correct logic
from the upstream OR gate (Fig. 3E). Circuits
with a four-input AND gate and a four-output
AND gate are shown in fig. S8C and fig. S9C,
respectively.

To demonstrate a digital circuit with an inter-
esting function, we built a circuit that computes
the floor of the square root of a four-bit binary
number (Fig. 4A). It is not an optimized digital
logic circuit; it is designed to showcaseAND,OR,
NOT, NAND, NOR, fan-in, and fan-out of logic
gates, aswell as fan-out of input signals. NOTgates
are difficult to implement directly using represen-
tations where the ON or OFF state of an input is
determined by the presence or absence of a single
DNA species: A circuit might compute a false
output before all input strands are added, because
NOT gates already produce ON signals in the

absence of their inputs, and for use-once circuits
(such as seesaw circuits), computations cannot
be undone. Therefore, we use dual-rail logic (fig.
S10B). Each input is replaced by a pair of inputs,
representing logic ON and OFF separately. Each
logic gate is replaced by a pair of AND or OR
gates. (Taking the NOR gate as an example, out-
put being OFF is the OR of both inputs being
ON; output being ON is the AND of both inputs
being OFF.) Initially, the pair of inputs is absent,
indicating that the logic value of this signal is un-
known. At the beginning of computation, one in-
put of the pair will be added, indicating either
logic ON orOFF. In this way, no computationwill
take place before the input signals arrive. With
dual-rail logic, any AND-OR-NOTcircuit can be
transformed into an equivalent circuit with AND
or OR gates only. Then, anyAND-OR circuit can
be further transformed into an equivalent seesaw

Fig. 4. A square-root circuit implemented with the seesaw DNA motif. (A)
A digital logic circuit that computes the floor of the square root of four-bit
binary numbers. (B) Abstract diagram of the seesaw circuit that is equiv-
alent to the square-root digital logic circuit. x0i and x1i are dual-rail inputs
of xi, and they represent logic OFF and ON, respectively (the same rule
applies to the outputs). Each pair of seesaw gates implements an AND (∧)
or OR (∨) gate. Each pair of dual-rail AND or OR gates implements one
ANDNOT, OR, NAND, or NOR gate. Red dots indicate positive red numbers,
specifying initial relative concentrations of free or bound signals; red cir-
cles indicate negative red numbers, specifying initial relative concentra-

tions of thresholds or reporters. An example of a two-input, two-output OR
gate is highlighted; full details are provided in fig. S10. (C) Kinetics
experiments of the square-root circuit with all combinations of inputs from
0000 to 1111. All 16 plots are shown separately in fig. S11. (D) Kinetics
experiments that compute the square roots of 0, 1, 4, and 9. Trajectories
and their corresponding outputs have matching colors. Dotted and solid
lines indicate dual-rail outputs that represent logic OFF and ON, respec-
tively. Sequences of strands are listed in tables S4 to S7. Experiments were
performed at 25°C, 1× = 50 nM, and 0.1× was used for OFF and 0.9× for
ON inputs.

3 JUNE 2011 VOL 332 SCIENCE www.sciencemag.org1200

REPORTS

 o
n

Se
pt

em
be

r 1
4,

 2
01

1
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

strand
displacement

cascades

molecular
logic circuits

• Largest autonomous biochemical
networks built from scratch

Qian, Winfree, Science 2011

Strand displacement has stimulated multiple research
directions in the wet-lab

(fig. S5). In all tested cases, the output went to
the correct ON or OFF state. A three-OR cascade
(fig. S6, A and B) and a four-OR cascade (fig. S6,
C and D) also worked. The delay time required
for circuit computation increased linearly with
the number of layers (Fig. 3A). However, once
the threshold for the output gate was exceeded,
the signal increased at roughly the same rate as
in the smaller circuit (Fig. 3B). In a circuit with
four layers, two AND gates, and three OR gates,
with 12 different combinations of inputs, the
output went to clear and correct ON or OFF
states in 8 hours (Fig. 3C).

Because integrating gates support multiple
inputs and amplifying gates support multiple
outputs, logic gates built from a pair of them can
easily support fan-in and fan-out. In a circuit with
a four-input OR gate, only when all inputs from
the upstream OR gates were OFF did the output

stay OFF (Fig. 3D). In a circuit with a four-output
OR gate, each output copied the correct logic
from the upstream OR gate (Fig. 3E). Circuits
with a four-input AND gate and a four-output
AND gate are shown in fig. S8C and fig. S9C,
respectively.

To demonstrate a digital circuit with an inter-
esting function, we built a circuit that computes
the floor of the square root of a four-bit binary
number (Fig. 4A). It is not an optimized digital
logic circuit; it is designed to showcaseAND,OR,
NOT, NAND, NOR, fan-in, and fan-out of logic
gates, aswell as fan-out of input signals. NOTgates
are difficult to implement directly using represen-
tations where the ON or OFF state of an input is
determined by the presence or absence of a single
DNA species: A circuit might compute a false
output before all input strands are added, because
NOT gates already produce ON signals in the

absence of their inputs, and for use-once circuits
(such as seesaw circuits), computations cannot
be undone. Therefore, we use dual-rail logic (fig.
S10B). Each input is replaced by a pair of inputs,
representing logic ON and OFF separately. Each
logic gate is replaced by a pair of AND or OR
gates. (Taking the NOR gate as an example, out-
put being OFF is the OR of both inputs being
ON; output being ON is the AND of both inputs
being OFF.) Initially, the pair of inputs is absent,
indicating that the logic value of this signal is un-
known. At the beginning of computation, one in-
put of the pair will be added, indicating either
logic ON orOFF. In this way, no computationwill
take place before the input signals arrive. With
dual-rail logic, any AND-OR-NOTcircuit can be
transformed into an equivalent circuit with AND
or OR gates only. Then, anyAND-OR circuit can
be further transformed into an equivalent seesaw

Fig. 4. A square-root circuit implemented with the seesaw DNA motif. (A)
A digital logic circuit that computes the floor of the square root of four-bit
binary numbers. (B) Abstract diagram of the seesaw circuit that is equiv-
alent to the square-root digital logic circuit. x0i and x1i are dual-rail inputs
of xi, and they represent logic OFF and ON, respectively (the same rule
applies to the outputs). Each pair of seesaw gates implements an AND (∧)
or OR (∨) gate. Each pair of dual-rail AND or OR gates implements one
ANDNOT, OR, NAND, or NOR gate. Red dots indicate positive red numbers,
specifying initial relative concentrations of free or bound signals; red cir-
cles indicate negative red numbers, specifying initial relative concentra-

tions of thresholds or reporters. An example of a two-input, two-output OR
gate is highlighted; full details are provided in fig. S10. (C) Kinetics
experiments of the square-root circuit with all combinations of inputs from
0000 to 1111. All 16 plots are shown separately in fig. S11. (D) Kinetics
experiments that compute the square roots of 0, 1, 4, and 9. Trajectories
and their corresponding outputs have matching colors. Dotted and solid
lines indicate dual-rail outputs that represent logic OFF and ON, respec-
tively. Sequences of strands are listed in tables S4 to S7. Experiments were
performed at 25°C, 1× = 50 nM, and 0.1× was used for OFF and 0.9× for
ON inputs.

3 JUNE 2011 VOL 332 SCIENCE www.sciencemag.org1200

REPORTS

 o
n

Se
pt

em
be

r 1
4,

 2
01

1
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

strand
displacement

cascades

molecular
logic circuits

of an integrating gate and an amplifying gate, in order to suppress leak
(Fig. 3c). The values of weights and thresholds determined by in silico
training were used to determine the concentrations of the 72 DNA
species that comprise the memory (Fig. 3b, c). In principle, the same
set of DNA molecules could be retrained to remember any of 500
distinct sets of patterns by adjusting weight and threshold concentra-
tions (Supplementary Information section 5).
In the tradition of using game-playing automata as a benchmark for

new computing technologies, we demonstrated the Hopfield network
in the context of a game called ‘read your mind’, which is played
between a human and the DNA associative memory in a cuvette
(Fig. 3d). The game consists of three steps. First, the human thinks
of a scientist, choosing from the listed four options (each scientist
corresponds to one of the four patterns; for example, Franklin is
0110) or someone else. Second, the human ‘tells’ the DNA associative
memory some of the answers to questionsQ1 toQ4 (Fig. 3d) by adding
corresponding DNA strands to the cuvette. Finally, after 8 h of ‘think-
ing’, the DNA associative memory will guess who is in the human’s
mind and ‘tell’ the human the rest of the answers by fluorescence
signals. In doing so, the four-neuron DNA associative memory exhi-
bits a brain-like behaviour: associative recall of memories based on
incomplete information.
Weplayed the game 27 timeswith theDNAassociativememory, out

of 81 possible ways of answering questions Q1 to Q4. Six examples are

shown in Fig. 3e; the rest are shown in Supplementary Figs 15–18. The
top left data in Fig. 3e can be interpreted as following: when the human
‘said’ that the scientist was born in the twentieth century (input x35 1)
but was not a mathematician (input x45 0), the DNA associative
memory ‘guessed’ that the scientist did not study neural networks (out-
put x1 was updated to 0) but was British (output x2 was updated to 1),
which indicated that the scientist was Rosalind Franklin (pattern 0110).
Similarly, the DNA associative memory was able to work out the other
three scientists correctly—in the best case, only one answer was given by
thehuman (themiddle right data). Thebottomleft data shows thatwhen
the informationprovided by the humanmatchedmultiple patterns (that
is, input x45 1 indicates that the scientist was amathematician, which is
true for both Alan Turing and Claude Shannon), the DNA associative
memory was able to identify that they were both born in the twentieth
century (output x3 was updated to 1), while the other outputs remained
unknown. The bottom right data show that the DNA associative
memory was also able to recognize information that was incompatible
with all memorized patterns by producing invalid output.
All experiments reported here were semiquantitatively reproduced

bymass action simulations using the exact model developed previously
for seesaw digital logic circuits17 with no changes to any rate constants
(see Supplementary Information section 7 and Supplementary Figs 19–
24 for comparisons to experiments, and Supplementary Figs 25–27 for
simulation predictions for the remaining 54 games).

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Time (h)

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

ba

c

x1

x2

x3

x4

1
0.5–2

1

1
–1.52

–1

–1
0.51

1

1
–1.5–1

2

5

f

1

8

1
1

1

53

5

1834

5

110

5

2740

5

1326

5

2841

5

820

5

2942

5

f
8

11
1

1
–2.2

f

1

8

1
1

1
–2.3

f

1

8

1
1

1
–1.5

f
14

12
2

2
–0.7

f
14

12
2

2
–2.2

f
8

11
1

1
–2.3

f

1

8

1
1

1
–1.5

–1.5

0 2 4 6 8
Time (h)

? 1 0 ? x x x x

Wrong
information

? ? ? 1 ? ? 1 1

Not enough
information

? ? 0 ? 1 0 0 0

Ramon y Cajal

d

36

1

39

1

43

1

44

f

21

2

1–0.4

f

22

2

1–0.4

f

30

2

1–0.4

f

31

2

1–0.4

6
ROX

–1.5

23
FAM

–1.5

24
TYE563

–1.5

25

TYE665
–1.51

0 ? ? 1 0 0 1 1

Shannon

Answers: Yes (1), No (0), or I don’t know (?)

Q1: Did the scientist study neural networks?

Q2: Was the scientist British?

Q3: Was the scientist born in the 20th century?

Q4: Was the scientist a mathematician?

? ? 1 0 0 1 1 0

Franklin

? 1 ? 1 1 1 1 1

Turing

0 1 1 0 Rosalind Franklin

1 1 1 1 Alan Turing

0 0 1 1 Claude Shannon

1 0 0 0 Santiago Ramon y Cajal

e

x1
0

x1
0

x1
0

x2
0

x2
0

x2
0

x3
0

x3
0

x3
0

x3
1

x3
1

x3
1

x4
0

x4
0

x4
0

x4
1

x4
1

x4
1

x2
1

x2
1

x2
1

x1
1

x1
1

x1
1

Figure 3 | A four-neuron Hopfield associative memory. a, The recurrent
linear threshold circuit. b, The resulting seesaw circuit using the dual-rail
implementation.Dashed lines indicate the connections to reporters. c, Four sets
of reporters with signal restoration that are connected to either x0i or x

1
i at any

given time. d, A ‘read your mind’ game between a human and the four-neuron
DNA associative memory that ‘remembers’ four scientists according to the
answers of four questions. e, Kinetics experiments of the ‘read yourmind’ game.
A total of 112 DNA strands assembled to form 72 initial DNA species (as
indicated by the red numbers in b, c) were mixed in solution at their respective
concentrations. The standard concentration was 135 25 nM. Selected inputs
corresponding to the human’s answers were then added with relative

concentrations of 53 (to set the initial states, inputs triggering the update of
multiple neurons are used, for example, w53,5 for x11 and w34,18 for x01). Dotted
and solid lines indicate dual-rail outputs x0i and x

1
i , respectively. For each signal,

if both dotted and solid lines stay ‘off’ (less than 0.2), the logic value is unknown,
‘?’; if the dotted (solid) line goes ‘on’ (greater than 0.65) and the solid (dotted)
line stays ‘off’, the logic value is ‘0’ (‘1’); if both dotted and solid lines go ‘on’, the
logic value is invalid, ‘x’. Arrows connect initial states of the four neurons
(inputs) to the final states (outputs at 8 h). The eight trajectories in each plot
were from two separate experiments (connecting either x0i or x

1
i to the

reporters) because we only have four distinct fluorophores. Sequences of strands
are listed in Supplementary Tables 5–7. Experiments were performed at 25 uC.

LETTER RESEARCH

2 1 J U LY 2 0 1 1 | V O L 4 7 5 | N A T U R E | 3 7 1

Macmillan Publishers Limited. All rights reserved©2011

molecular artificial
neural networks

• Largest autonomous biochemical
networks built from scratch • Biochemical system doing inference

Qian, Winfree, Science 2011 Qian, Winfree, Bruck Nature 2011

Strand displacement has stimulated multiple research
directions in the wet-lab

(fig. S5). In all tested cases, the output went to
the correct ON or OFF state. A three-OR cascade
(fig. S6, A and B) and a four-OR cascade (fig. S6,
C and D) also worked. The delay time required
for circuit computation increased linearly with
the number of layers (Fig. 3A). However, once
the threshold for the output gate was exceeded,
the signal increased at roughly the same rate as
in the smaller circuit (Fig. 3B). In a circuit with
four layers, two AND gates, and three OR gates,
with 12 different combinations of inputs, the
output went to clear and correct ON or OFF
states in 8 hours (Fig. 3C).

Because integrating gates support multiple
inputs and amplifying gates support multiple
outputs, logic gates built from a pair of them can
easily support fan-in and fan-out. In a circuit with
a four-input OR gate, only when all inputs from
the upstream OR gates were OFF did the output

stay OFF (Fig. 3D). In a circuit with a four-output
OR gate, each output copied the correct logic
from the upstream OR gate (Fig. 3E). Circuits
with a four-input AND gate and a four-output
AND gate are shown in fig. S8C and fig. S9C,
respectively.

To demonstrate a digital circuit with an inter-
esting function, we built a circuit that computes
the floor of the square root of a four-bit binary
number (Fig. 4A). It is not an optimized digital
logic circuit; it is designed to showcaseAND,OR,
NOT, NAND, NOR, fan-in, and fan-out of logic
gates, aswell as fan-out of input signals. NOTgates
are difficult to implement directly using represen-
tations where the ON or OFF state of an input is
determined by the presence or absence of a single
DNA species: A circuit might compute a false
output before all input strands are added, because
NOT gates already produce ON signals in the

absence of their inputs, and for use-once circuits
(such as seesaw circuits), computations cannot
be undone. Therefore, we use dual-rail logic (fig.
S10B). Each input is replaced by a pair of inputs,
representing logic ON and OFF separately. Each
logic gate is replaced by a pair of AND or OR
gates. (Taking the NOR gate as an example, out-
put being OFF is the OR of both inputs being
ON; output being ON is the AND of both inputs
being OFF.) Initially, the pair of inputs is absent,
indicating that the logic value of this signal is un-
known. At the beginning of computation, one in-
put of the pair will be added, indicating either
logic ON orOFF. In this way, no computationwill
take place before the input signals arrive. With
dual-rail logic, any AND-OR-NOTcircuit can be
transformed into an equivalent circuit with AND
or OR gates only. Then, anyAND-OR circuit can
be further transformed into an equivalent seesaw

Fig. 4. A square-root circuit implemented with the seesaw DNA motif. (A)
A digital logic circuit that computes the floor of the square root of four-bit
binary numbers. (B) Abstract diagram of the seesaw circuit that is equiv-
alent to the square-root digital logic circuit. x0i and x1i are dual-rail inputs
of xi, and they represent logic OFF and ON, respectively (the same rule
applies to the outputs). Each pair of seesaw gates implements an AND (∧)
or OR (∨) gate. Each pair of dual-rail AND or OR gates implements one
ANDNOT, OR, NAND, or NOR gate. Red dots indicate positive red numbers,
specifying initial relative concentrations of free or bound signals; red cir-
cles indicate negative red numbers, specifying initial relative concentra-

tions of thresholds or reporters. An example of a two-input, two-output OR
gate is highlighted; full details are provided in fig. S10. (C) Kinetics
experiments of the square-root circuit with all combinations of inputs from
0000 to 1111. All 16 plots are shown separately in fig. S11. (D) Kinetics
experiments that compute the square roots of 0, 1, 4, and 9. Trajectories
and their corresponding outputs have matching colors. Dotted and solid
lines indicate dual-rail outputs that represent logic OFF and ON, respec-
tively. Sequences of strands are listed in tables S4 to S7. Experiments were
performed at 25°C, 1× = 50 nM, and 0.1× was used for OFF and 0.9× for
ON inputs.

3 JUNE 2011 VOL 332 SCIENCE www.sciencemag.org1200

REPORTS

 o
n

Se
pt

em
be

r 1
4,

 2
01

1
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

strand
displacement

cascades

molecular
logic circuits

controlling assembly of
nanoscale structures

10nM

of an integrating gate and an amplifying gate, in order to suppress leak
(Fig. 3c). The values of weights and thresholds determined by in silico
training were used to determine the concentrations of the 72 DNA
species that comprise the memory (Fig. 3b, c). In principle, the same
set of DNA molecules could be retrained to remember any of 500
distinct sets of patterns by adjusting weight and threshold concentra-
tions (Supplementary Information section 5).
In the tradition of using game-playing automata as a benchmark for

new computing technologies, we demonstrated the Hopfield network
in the context of a game called ‘read your mind’, which is played
between a human and the DNA associative memory in a cuvette
(Fig. 3d). The game consists of three steps. First, the human thinks
of a scientist, choosing from the listed four options (each scientist
corresponds to one of the four patterns; for example, Franklin is
0110) or someone else. Second, the human ‘tells’ the DNA associative
memory some of the answers to questionsQ1 toQ4 (Fig. 3d) by adding
corresponding DNA strands to the cuvette. Finally, after 8 h of ‘think-
ing’, the DNA associative memory will guess who is in the human’s
mind and ‘tell’ the human the rest of the answers by fluorescence
signals. In doing so, the four-neuron DNA associative memory exhi-
bits a brain-like behaviour: associative recall of memories based on
incomplete information.
Weplayed the game 27 timeswith theDNAassociativememory, out

of 81 possible ways of answering questions Q1 to Q4. Six examples are

shown in Fig. 3e; the rest are shown in Supplementary Figs 15–18. The
top left data in Fig. 3e can be interpreted as following: when the human
‘said’ that the scientist was born in the twentieth century (input x35 1)
but was not a mathematician (input x45 0), the DNA associative
memory ‘guessed’ that the scientist did not study neural networks (out-
put x1 was updated to 0) but was British (output x2 was updated to 1),
which indicated that the scientist was Rosalind Franklin (pattern 0110).
Similarly, the DNA associative memory was able to work out the other
three scientists correctly—in the best case, only one answer was given by
thehuman (themiddle right data). Thebottomleft data shows thatwhen
the informationprovided by the humanmatchedmultiple patterns (that
is, input x45 1 indicates that the scientist was amathematician, which is
true for both Alan Turing and Claude Shannon), the DNA associative
memory was able to identify that they were both born in the twentieth
century (output x3 was updated to 1), while the other outputs remained
unknown. The bottom right data show that the DNA associative
memory was also able to recognize information that was incompatible
with all memorized patterns by producing invalid output.
All experiments reported here were semiquantitatively reproduced

bymass action simulations using the exact model developed previously
for seesaw digital logic circuits17 with no changes to any rate constants
(see Supplementary Information section 7 and Supplementary Figs 19–
24 for comparisons to experiments, and Supplementary Figs 25–27 for
simulation predictions for the remaining 54 games).

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Time (h)

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

ba

c

x1

x2

x3

x4

1
0.5–2

1

1
–1.52

–1

–1
0.51

1

1
–1.5–1

2

5

f

1

8

1
1

1

53

5

1834

5

110

5

2740

5

1326

5

2841

5

820

5

2942

5

f
8

11
1

1
–2.2

f

1

8

1
1

1
–2.3

f

1

8

1
1

1
–1.5

f
14

12
2

2
–0.7

f
14

12
2

2
–2.2

f
8

11
1

1
–2.3

f

1

8

1
1

1
–1.5

–1.5

0 2 4 6 8
Time (h)

? 1 0 ? x x x x

Wrong
information

? ? ? 1 ? ? 1 1

Not enough
information

? ? 0 ? 1 0 0 0

Ramon y Cajal

d

36

1

39

1

43

1

44

f

21

2

1–0.4

f

22

2

1–0.4

f

30

2

1–0.4

f

31

2

1–0.4

6
ROX

–1.5

23
FAM

–1.5

24
TYE563

–1.5

25

TYE665
–1.51

0 ? ? 1 0 0 1 1

Shannon

Answers: Yes (1), No (0), or I don’t know (?)

Q1: Did the scientist study neural networks?

Q2: Was the scientist British?

Q3: Was the scientist born in the 20th century?

Q4: Was the scientist a mathematician?

? ? 1 0 0 1 1 0

Franklin

? 1 ? 1 1 1 1 1

Turing

0 1 1 0 Rosalind Franklin

1 1 1 1 Alan Turing

0 0 1 1 Claude Shannon

1 0 0 0 Santiago Ramon y Cajal

e

x1
0

x1
0

x1
0

x2
0

x2
0

x2
0

x3
0

x3
0

x3
0

x3
1

x3
1

x3
1

x4
0

x4
0

x4
0

x4
1

x4
1

x4
1

x2
1

x2
1

x2
1

x1
1

x1
1

x1
1

Figure 3 | A four-neuron Hopfield associative memory. a, The recurrent
linear threshold circuit. b, The resulting seesaw circuit using the dual-rail
implementation.Dashed lines indicate the connections to reporters. c, Four sets
of reporters with signal restoration that are connected to either x0i or x

1
i at any

given time. d, A ‘read your mind’ game between a human and the four-neuron
DNA associative memory that ‘remembers’ four scientists according to the
answers of four questions. e, Kinetics experiments of the ‘read yourmind’ game.
A total of 112 DNA strands assembled to form 72 initial DNA species (as
indicated by the red numbers in b, c) were mixed in solution at their respective
concentrations. The standard concentration was 135 25 nM. Selected inputs
corresponding to the human’s answers were then added with relative

concentrations of 53 (to set the initial states, inputs triggering the update of
multiple neurons are used, for example, w53,5 for x11 and w34,18 for x01). Dotted
and solid lines indicate dual-rail outputs x0i and x

1
i , respectively. For each signal,

if both dotted and solid lines stay ‘off’ (less than 0.2), the logic value is unknown,
‘?’; if the dotted (solid) line goes ‘on’ (greater than 0.65) and the solid (dotted)
line stays ‘off’, the logic value is ‘0’ (‘1’); if both dotted and solid lines go ‘on’, the
logic value is invalid, ‘x’. Arrows connect initial states of the four neurons
(inputs) to the final states (outputs at 8 h). The eight trajectories in each plot
were from two separate experiments (connecting either x0i or x

1
i to the

reporters) because we only have four distinct fluorophores. Sequences of strands
are listed in Supplementary Tables 5–7. Experiments were performed at 25 uC.

LETTER RESEARCH

2 1 J U LY 2 0 1 1 | V O L 4 7 5 | N A T U R E | 3 7 1

Macmillan Publishers Limited. All rights reserved©2011

molecular artificial
neural networks

• Largest autonomous biochemical
networks built from scratch • Biochemical system doing inference

• Prescribed nanoscale structures seen
under atomic force microscope

Qian, Winfree, Science 2011 Qian, Winfree, Bruck Nature 2011

Yin, Choi, Calvert, Yurke, Pierce Nature 2008

Strand displacement has stimulated multiple research
directions in the wet-lab

(fig. S5). In all tested cases, the output went to
the correct ON or OFF state. A three-OR cascade
(fig. S6, A and B) and a four-OR cascade (fig. S6,
C and D) also worked. The delay time required
for circuit computation increased linearly with
the number of layers (Fig. 3A). However, once
the threshold for the output gate was exceeded,
the signal increased at roughly the same rate as
in the smaller circuit (Fig. 3B). In a circuit with
four layers, two AND gates, and three OR gates,
with 12 different combinations of inputs, the
output went to clear and correct ON or OFF
states in 8 hours (Fig. 3C).

Because integrating gates support multiple
inputs and amplifying gates support multiple
outputs, logic gates built from a pair of them can
easily support fan-in and fan-out. In a circuit with
a four-input OR gate, only when all inputs from
the upstream OR gates were OFF did the output

stay OFF (Fig. 3D). In a circuit with a four-output
OR gate, each output copied the correct logic
from the upstream OR gate (Fig. 3E). Circuits
with a four-input AND gate and a four-output
AND gate are shown in fig. S8C and fig. S9C,
respectively.

To demonstrate a digital circuit with an inter-
esting function, we built a circuit that computes
the floor of the square root of a four-bit binary
number (Fig. 4A). It is not an optimized digital
logic circuit; it is designed to showcaseAND,OR,
NOT, NAND, NOR, fan-in, and fan-out of logic
gates, aswell as fan-out of input signals. NOTgates
are difficult to implement directly using represen-
tations where the ON or OFF state of an input is
determined by the presence or absence of a single
DNA species: A circuit might compute a false
output before all input strands are added, because
NOT gates already produce ON signals in the

absence of their inputs, and for use-once circuits
(such as seesaw circuits), computations cannot
be undone. Therefore, we use dual-rail logic (fig.
S10B). Each input is replaced by a pair of inputs,
representing logic ON and OFF separately. Each
logic gate is replaced by a pair of AND or OR
gates. (Taking the NOR gate as an example, out-
put being OFF is the OR of both inputs being
ON; output being ON is the AND of both inputs
being OFF.) Initially, the pair of inputs is absent,
indicating that the logic value of this signal is un-
known. At the beginning of computation, one in-
put of the pair will be added, indicating either
logic ON orOFF. In this way, no computationwill
take place before the input signals arrive. With
dual-rail logic, any AND-OR-NOTcircuit can be
transformed into an equivalent circuit with AND
or OR gates only. Then, anyAND-OR circuit can
be further transformed into an equivalent seesaw

Fig. 4. A square-root circuit implemented with the seesaw DNA motif. (A)
A digital logic circuit that computes the floor of the square root of four-bit
binary numbers. (B) Abstract diagram of the seesaw circuit that is equiv-
alent to the square-root digital logic circuit. x0i and x1i are dual-rail inputs
of xi, and they represent logic OFF and ON, respectively (the same rule
applies to the outputs). Each pair of seesaw gates implements an AND (∧)
or OR (∨) gate. Each pair of dual-rail AND or OR gates implements one
ANDNOT, OR, NAND, or NOR gate. Red dots indicate positive red numbers,
specifying initial relative concentrations of free or bound signals; red cir-
cles indicate negative red numbers, specifying initial relative concentra-

tions of thresholds or reporters. An example of a two-input, two-output OR
gate is highlighted; full details are provided in fig. S10. (C) Kinetics
experiments of the square-root circuit with all combinations of inputs from
0000 to 1111. All 16 plots are shown separately in fig. S11. (D) Kinetics
experiments that compute the square roots of 0, 1, 4, and 9. Trajectories
and their corresponding outputs have matching colors. Dotted and solid
lines indicate dual-rail outputs that represent logic OFF and ON, respec-
tively. Sequences of strands are listed in tables S4 to S7. Experiments were
performed at 25°C, 1× = 50 nM, and 0.1× was used for OFF and 0.9× for
ON inputs.

3 JUNE 2011 VOL 332 SCIENCE www.sciencemag.org1200

REPORTS

 o
n

Se
pt

em
be

r 1
4,

 2
01

1
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

strand
displacement

cascades

molecular
logic circuits

controlling assembly of
nanoscale structures

10nM

strand displacement
in mammalian cells

of an integrating gate and an amplifying gate, in order to suppress leak
(Fig. 3c). The values of weights and thresholds determined by in silico
training were used to determine the concentrations of the 72 DNA
species that comprise the memory (Fig. 3b, c). In principle, the same
set of DNA molecules could be retrained to remember any of 500
distinct sets of patterns by adjusting weight and threshold concentra-
tions (Supplementary Information section 5).
In the tradition of using game-playing automata as a benchmark for

new computing technologies, we demonstrated the Hopfield network
in the context of a game called ‘read your mind’, which is played
between a human and the DNA associative memory in a cuvette
(Fig. 3d). The game consists of three steps. First, the human thinks
of a scientist, choosing from the listed four options (each scientist
corresponds to one of the four patterns; for example, Franklin is
0110) or someone else. Second, the human ‘tells’ the DNA associative
memory some of the answers to questionsQ1 toQ4 (Fig. 3d) by adding
corresponding DNA strands to the cuvette. Finally, after 8 h of ‘think-
ing’, the DNA associative memory will guess who is in the human’s
mind and ‘tell’ the human the rest of the answers by fluorescence
signals. In doing so, the four-neuron DNA associative memory exhi-
bits a brain-like behaviour: associative recall of memories based on
incomplete information.
Weplayed the game 27 timeswith theDNAassociativememory, out

of 81 possible ways of answering questions Q1 to Q4. Six examples are

shown in Fig. 3e; the rest are shown in Supplementary Figs 15–18. The
top left data in Fig. 3e can be interpreted as following: when the human
‘said’ that the scientist was born in the twentieth century (input x35 1)
but was not a mathematician (input x45 0), the DNA associative
memory ‘guessed’ that the scientist did not study neural networks (out-
put x1 was updated to 0) but was British (output x2 was updated to 1),
which indicated that the scientist was Rosalind Franklin (pattern 0110).
Similarly, the DNA associative memory was able to work out the other
three scientists correctly—in the best case, only one answer was given by
thehuman (themiddle right data). Thebottomleft data shows thatwhen
the informationprovided by the humanmatchedmultiple patterns (that
is, input x45 1 indicates that the scientist was amathematician, which is
true for both Alan Turing and Claude Shannon), the DNA associative
memory was able to identify that they were both born in the twentieth
century (output x3 was updated to 1), while the other outputs remained
unknown. The bottom right data show that the DNA associative
memory was also able to recognize information that was incompatible
with all memorized patterns by producing invalid output.
All experiments reported here were semiquantitatively reproduced

bymass action simulations using the exact model developed previously
for seesaw digital logic circuits17 with no changes to any rate constants
(see Supplementary Information section 7 and Supplementary Figs 19–
24 for comparisons to experiments, and Supplementary Figs 25–27 for
simulation predictions for the remaining 54 games).

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Time (h)

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

ba

c

x1

x2

x3

x4

1
0.5–2

1

1
–1.52

–1

–1
0.51

1

1
–1.5–1

2

5

f

1

8

1
1

1

53

5

1834

5

110

5

2740

5

1326

5

2841

5

820

5

2942

5

f
8

11
1

1
–2.2

f

1

8

1
1

1
–2.3

f

1

8

1
1

1
–1.5

f
14

12
2

2
–0.7

f
14

12
2

2
–2.2

f
8

11
1

1
–2.3

f

1

8

1
1

1
–1.5

–1.5

0 2 4 6 8
Time (h)

? 1 0 ? x x x x

Wrong
information

? ? ? 1 ? ? 1 1

Not enough
information

? ? 0 ? 1 0 0 0

Ramon y Cajal

d

36

1

39

1

43

1

44

f

21

2

1–0.4

f

22

2

1–0.4

f

30

2

1–0.4

f

31

2

1–0.4

6
ROX

–1.5

23
FAM

–1.5

24
TYE563

–1.5

25

TYE665
–1.51

0 ? ? 1 0 0 1 1

Shannon

Answers: Yes (1), No (0), or I don’t know (?)

Q1: Did the scientist study neural networks?

Q2: Was the scientist British?

Q3: Was the scientist born in the 20th century?

Q4: Was the scientist a mathematician?

? ? 1 0 0 1 1 0

Franklin

? 1 ? 1 1 1 1 1

Turing

0 1 1 0 Rosalind Franklin

1 1 1 1 Alan Turing

0 0 1 1 Claude Shannon

1 0 0 0 Santiago Ramon y Cajal

e

x1
0

x1
0

x1
0

x2
0

x2
0

x2
0

x3
0

x3
0

x3
0

x3
1

x3
1

x3
1

x4
0

x4
0

x4
0

x4
1

x4
1

x4
1

x2
1

x2
1

x2
1

x1
1

x1
1

x1
1

Figure 3 | A four-neuron Hopfield associative memory. a, The recurrent
linear threshold circuit. b, The resulting seesaw circuit using the dual-rail
implementation.Dashed lines indicate the connections to reporters. c, Four sets
of reporters with signal restoration that are connected to either x0i or x

1
i at any

given time. d, A ‘read your mind’ game between a human and the four-neuron
DNA associative memory that ‘remembers’ four scientists according to the
answers of four questions. e, Kinetics experiments of the ‘read yourmind’ game.
A total of 112 DNA strands assembled to form 72 initial DNA species (as
indicated by the red numbers in b, c) were mixed in solution at their respective
concentrations. The standard concentration was 135 25 nM. Selected inputs
corresponding to the human’s answers were then added with relative

concentrations of 53 (to set the initial states, inputs triggering the update of
multiple neurons are used, for example, w53,5 for x11 and w34,18 for x01). Dotted
and solid lines indicate dual-rail outputs x0i and x

1
i , respectively. For each signal,

if both dotted and solid lines stay ‘off’ (less than 0.2), the logic value is unknown,
‘?’; if the dotted (solid) line goes ‘on’ (greater than 0.65) and the solid (dotted)
line stays ‘off’, the logic value is ‘0’ (‘1’); if both dotted and solid lines go ‘on’, the
logic value is invalid, ‘x’. Arrows connect initial states of the four neurons
(inputs) to the final states (outputs at 8 h). The eight trajectories in each plot
were from two separate experiments (connecting either x0i or x

1
i to the

reporters) because we only have four distinct fluorophores. Sequences of strands
are listed in Supplementary Tables 5–7. Experiments were performed at 25 uC.

LETTER RESEARCH

2 1 J U LY 2 0 1 1 | V O L 4 7 5 | N A T U R E | 3 7 1

Macmillan Publishers Limited. All rights reserved©2011

molecular artificial
neural networks

• Largest autonomous biochemical
networks built from scratch • Biochemical system doing inference

• Logic on biological signals
• Prescribed nanoscale structures seen

under atomic force microscope

Qian, Winfree, Science 2011 Qian, Winfree, Bruck Nature 2011

Hemphill, Deiters J Am Chem Soc 2013Yin, Choi, Calvert, Yurke, Pierce Nature 2008

Strand displacement has stimulated multiple research
directions in the wet-lab

formally definable CRNs

SDCs

Strand displacement cascades
are complete for chemical reaction networks

Soloveichik, Seelig, Winfree, “DNA as a Universal Substrate for Chemical Kinetics”, PNAS, 2010

formally definable CRNs

SDCs

Strand displacement cascades
are complete for chemical reaction networks

Soloveichik, Seelig, Winfree, “DNA as a Universal Substrate for Chemical Kinetics”, PNAS, 2010

Goal: Approximate Majority

...

Strand Displacement Implementation

“3 rules” reactions

Strand Displacement Implementation of
the Approximate Majority Network

compile

Soloveichik,
Seelig, Winfree

PNAS 2010

Goal: Approximate Majority

...

Strand Displacement Implementation

“3 rules” reactions

Strand Displacement Implementation of
the Approximate Majority Network

compile

Chen, Dalchau, Srinivas, Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013

co
un

t
of

 s
ta

te

time (au)
20 40 60 80 100

200

400

600

800

1000
X

B
Y

start: X=700, Y=300

Ideal Test tube

Yuan-Jyue Chen
(graduate student)

Soloveichik,
Seelig, Winfree

PNAS 2010

Goal: Approximate Majority

...

Strand Displacement Implementation

“3 rules” reactions

Strand Displacement Implementation of
the Approximate Majority Network

compile

Chen, Dalchau, Srinivas, Phillips, Cardelli, Soloveichik, Seelig, Nature Nanotechnology 2013

co
un

t
of

 s
ta

te

time (au)
20 40 60 80 100

200

400

600

800

1000
X

B
Y

start: X=700, Y=300

Ideal Test tube

Yuan-Jyue Chen
(graduate student)

Soloveichik,
Seelig, Winfree

PNAS 2010

1011 agents!

Every goal reaction corresponds to a set of
implementation reactions

Why)do)we)care?)

X3 + X4 k1! X5

X5 k2! X1

X1 + X2 k3! X3

X3 + g1 k4! i + g2

i + g2 k5! X3 + g1

i + x4 k6! j + w1

j + g3 k7! X5 + w2

X5 + g4 k8! k + w3

k + g5 k9! X1 + w4

X1 + g6 k10! l + g7

l + g7 k11! X1 + g6

l + X2 k12! m + w5

m + g8 k13! X3 + w6

=&?&

But&you&are&implemenWng&each&
reacWon&separately.&So&why&can’t&I&
verify&them&separately?&

Yes&you&can,&if&there&is&no&crosstalk&between&
modules&implemenWng&different&reacWons.&
[Lakin,&Phillips,&Stefanovic&2013]&

Every goal reaction corresponds to a set of
implementation reactions

A → B + C

Goal reactions Implementation

A → i1 + B
i1 + B → A
i1 → C

How can you tell that an implementation of a
reaction is correct? Can be tricky!

[Shin, Thachuk, Winfree, VEMDP 2014]

B + D → B + E

A + E → F

1.

2.

3.

1.1.
1.2.
1.3.

A → B + C

Goal reactions Implementation

A → i1 + B
i1 + B → A
i1 → C

How can you tell that an implementation of a
reaction is correct? Can be tricky!

[Shin, Thachuk, Winfree, VEMDP 2014]

B + D → B + E

A + E → F

1.

2.

3.

1.1.
1.2.
1.3.

A → B + C

Goal reactions Implementation

A → i1 + B
i1 + B → A
i1 → C

{1 A, 1 D}⟹
{1 il, 1 B, 1 D}
1.1 ⟹

{1 il, 1 B, 1 E}
2 ⟹

{1 A, 1 E}
1.2 ⟹

{1 F}
3

Ex. Error

How can you tell that an implementation of a
reaction is correct? Can be tricky!

[Shin, Thachuk, Winfree, VEMDP 2014]

B + D → B + E

A + E → F

1.

2.

3.

1.1.
1.2.
1.3.

A → B + C

Goal reactions Implementation

A → i1 + B
i1 + B → A
i1 → C

{1 A, 1 D}⟹
{1 il, 1 B, 1 D}
1.1 ⟹

{1 il, 1 B, 1 E}
2 ⟹

{1 A, 1 E}
1.2 ⟹

{1 F}
3

Ex. Error

How can you tell that an implementation of a
reaction is correct? Can be tricky!

[Shin, Thachuk, Winfree, VEMDP 2014]

Acknowledgements
Adam Arkin
Luca Cardelli
Ho-Lin Chen

Yuan-Jyue Chen
Matthew Cook

David Doty
Manoj Gopalkrishnan

Lulu Qian
Paul W.K. Rothemund

Georg Seelig
Niranjan Srinivas

Erik Winfree
Damien Woods

David Zhang

UCSF Center for Systems & Synth Bio
Winfree group (Caltech)

Seelig group (UW)

NSF MPP grant
CI Fellows

UCSF

an NIGMS national systems biology center

center for systems
& synthetic biology

DISC’14

