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Chemical reaction networks (CRN)

A + B → C1

R → P
1
 + P

2
2.5

X + Y → X + Z5

A + Z → 
(anonymous 
waste product)

0.1

X → 2X0.1

(anonymous 
fuel source)
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formally definable CRNs this talk

actual chemicals
ultimate interest

What behavior is possible
for chemistry in principle?

found in biology inspiration
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Why compute with chemistry?

slower faster

≈ 10-100 nm  ≈ 10-100 nm

Compatible with 
biological or other 
“wet environments”? 

not easily

bioreactorscells

“chemical 
controller” to 
increase yield of 
metabolically 
produced 
biofuels/drugs/etc.

“smart drug” to 
detect microRNAs 
levels of cell and 
release appropriate 
drug in response

versus

speed?

component size?

yes
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discrete algorithms

What does it mean to compute with chemistry?

CRNs have a wide range of behaviors:

Boolean logic

signal processing

oscillation
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Discrete (stochastic) kinetic CRN model

● species: {X, Y, …}

● rate of reaction:

k
1
•#X

k
2
•#A•#B / volume

● state: integer vector of counts 
s = (#X, #Y, ...)

● reactions:

X → W + 2Y + Z
k

1

k
2A + B → X

Prob[some reaction] = _______________rate of that reaction

sum of all reaction rates

time until next reaction = exponential 
random variable
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Population protocols

n finite-state agents

r

q

q

δ(q,r) = (s,t) t

q q

t

s

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

δ(s,r) = (q,q)

“parallel time” = # of interactions / n

repeatedly pick pair 
to interact
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A PP is a CRN such that...
● all reactions have 2 reactants and 2 products

● all rate constants are 1

● order of reactants can matter

● volume = number of molecules
(constant over time because of first constraint)

(there's a “sender” and a “receiver” molecule)

● sender/receiver states uniquely determine products
(e.g., cannot have A+B → C+D and A+B → X+Y)



 58

Computation with CRNs: Outline

● Stable computation (“deterministic”)
● Randomized computation:

– probability of error = small

– probability of error = 0
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Stable (deterministic) CRN computation
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Stable CRN predicate computation 
(alternate definition)

execution: infinite sequence of states s
1
, s

2
, …, where s

i+1
 is s

i
 

after applying a reaction (allow “null” reaction for convenience)

fair execution: every state always reachable is infinitely often 
reached

stable computation: predicate p(x
1
,...,x

k
) is stably computed if 

every fair execution contains an output stable state o with  
φ(o) = p(x

1
,...,x

k
)
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Stable CRN predicate computation 
(example)
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1
,x

2
): “x

1
=x

2
”?

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 Y }



 91

Stable CRN predicate computation 
(example)

predicate: p(x
1
,x

2
): “x

1
=x

2
”?

reactions: X
1
 + X

2
 → Y

Y + N → Y
X

1
 + Y → X

1
 + N

X
2
 + Y → X

2
 + N

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 Y }
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2
'

= x
1
 + x

2
 – min{x

1
,x

2
}

X
1
' + X

2
' → K
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Stable CRN function computation 
(example)

function: f(x
1
,x

2
) = max{x

1
,x

2
}

reactions: X
1
 → Y + X

1
'

X
2
 → Y + X

2
'

= x
1
 + x

2
 – min{x

1
,x

2
}

X
1
' + X

2
' → K

K + Y →
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Stable CRN predicate computation 
(example)

predicate: p(x
1
,x

2
): “3x

1
 > x

2
/2”?

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 N }



 116

Stable CRN predicate computation 
(example)

predicate: p(x
1
,x

2
): “3x

1
 > x

2
/2”?

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 N }

reactions: X
1
 → 3Z

1

2X
2
 → Z

2
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Stable CRN predicate computation 
(example)

predicate: p(x
1
,x

2
): “3x

1
 > x

2
/2”?

initial state: { x
1
 X

1
 , x

2
 X

2
 , 1 N }

reactions: X
1
 → 3Z

1

2X
2
 → Z

2

N + Z
1
 → Y

Y + Z
2
 → N
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Stable computation characterization

Theorem: A predicate is stably computed by a CRN if 
and only if it is semilinear.

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004) 

(Angluin, Aspnes, Eisenstat, PODC 2006)
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 < –7
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Stable computation characterization

Theorem: A predicate is stably computed by a CRN if 
and only if it is semilinear.

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004) 

(Angluin, Aspnes, Eisenstat, PODC 2006)

“semilinear” = Boolean combination of threshold 

x
1
 – 3x

2
 < –72x

1
 + x

2
 ≡ 3 mod 5

(Chen, Doty, Soloveichik, DNA 2012, for function computation)

and mod tests
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,...,u

p
} such that 

o is output stable if and only if no u
i
 ≤ o

● [Brijder, DNA 2014]: An algorithm can compute {u
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p
} 

in time O(p logs-0.5(p) r s2 log(u)) for population protocols

u = max
i
 |u

i
|

s = # species
r = # reactions
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Deciding output stability

● Each CRN has a set of p vectors {u
1
,...,u

p
} such that 

o is output stable if and only if no u
i
 ≤ o

● [Brijder, DNA 2014]: An algorithm can compute {u
1
,...,u

p
} 

in time O(p logs-0.5(p) r s2 log(u)) for population protocols

● Open question: how big can p and u get?

● Open question: extension to general CRNs?

u = max
i
 |u

i
|

s = # species
r = # reactions
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Time complexity of stable computation

n = # molecules in initial state
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Time complexity of stable computation

O(n) if initial state contains only input molecules
(Angluin, Aspnes, Eisenstat, PODC 2006, for predicates)
(Doty, Hajiaghayi, DNA 2013, for functions)

n = # molecules in initial state
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Time complexity of stable computation

O(n) if initial state contains only input molecules
(Angluin, Aspnes, Eisenstat, PODC 2006, for predicates)
(Doty, Hajiaghayi, DNA 2013, for functions)

O(polylog(n)) otherwise (if the CRN can start with a leader)
(Angluin, Aspnes, Eisenstat, DISC 2006, for predicates)
(Chen, Doty, Soloveichik, DNA 2012, for functions)

n = # molecules in initial state
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Time complexity of stable computation

O(n) if initial state contains only input molecules
(Angluin, Aspnes, Eisenstat, PODC 2006, for predicates)
(Doty, Hajiaghayi, DNA 2013, for functions)

O(polylog(n)) otherwise (if the CRN can start with a leader)
(Angluin, Aspnes, Eisenstat, DISC 2006, for predicates)
(Chen, Doty, Soloveichik, DNA 2012, for functions)

n = # molecules in initial state

polylogarithmic time = “fast” = polynomial in binary expansion of n

linear time = “slow” = exponential in binary expansion of n
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Time complexity in CRNs

1 / #X

volume / (#A•#B)

X → W + 2Y + Z

A + B → X

time until next reaction = exponential r.v.

reaction expected time
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Time complexity (example)

{n X}
X → Y + Y
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Time complexity (example)

{n X}
X → Y + Y

E[time to consume all X] =    E[time to consume first X]
+ E[time to consume second X]
+ E[time to consume third X]
+ ...
+ E[time to consume final X]
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Time complexity (example)

{n X}
X → Y + Y

E[time to consume all X] =    E[time to consume first X]
+ E[time to consume second X]
+ E[time to consume third X]
+ ...
+ E[time to consume final X]

= 1/n + 1/(n-1) + 1/(n-2) + … + 1/1
≈ log n
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Time complexity (example)

{n X}, volume n
X + X → Y

E[time to consume all X] = 
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Time complexity (example)

{n X}, volume n
X + X → Y

E[time to consume all X] = n/n2 + n/(n–2)2 + n/(n–4)2 + … + n
< n(1/22 + 1/42 + 1/62 + 1/82 + ...)
= O(n)
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{n X}, volume n
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= O(n)
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Time complexity (leader election)

{n L}, volume n
L + L → L
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Time complexity (leader election)

{n L}, volume n
L + L → L

E[time get to 1 L] = O(n)

Is there a faster CRN?

● If we really abuse the CRN model, yes (use 2X→3X)

● In mass-conserving CRNs, we don't know

– Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that 
seems to work in simulation

– If we require 0 probability of error, no (unpublished)
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{n L}, volume n
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E[time get to 1 L] = O(n)

Is there a faster CRN?

● If we really abuse the CRN model, yes (use 2X→3X)

● In mass-conserving CRNs, we don't know

– Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that 
seems to work in simulation

– If we require 0 probability of error, no (unpublished)
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What if we allow a small probability of error?
(Randomized CRN computation)
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Randomized CRNs are Turing universal

(Angluin, Aspnes, Eisenstat, DISC 2006)
(Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)

“in a sense”
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Randomized CRNs are Turing universal

Informal: A CRN can simulate a Turing machine with polynomial 
slowdown and small chance of error.

Formal: For each TM M, there is a CRN C so that, for each ε > 0 
and natural number n, there is an initial state x of C so that C 
simulates M(n) with probability ε of error, and expected time 
poly(s•t), where t and s are the time and space usage of M(n).

(Angluin, Aspnes, Eisenstat, DISC 2006)
(Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)

Implication: CRN simulation algorithms are the fastest way to 
predict their behavior.

“in a sense”
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“input” counter
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r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter
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Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter
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Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter
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Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

“input” counter
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Counter (register) machine
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if empty goto 1

“input” counter
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r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

HALT

“input” counter
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r s t

Counter (register) machine

1) dec(r)

2) inc(s)

3) inc(s)

4) inc(s)

5) dec(t)

6) inc(s)

if empty goto 6

if empty goto 1

computes f(n) = 3n+1

HALT

“input” counter
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CRNs can simulate counter 
machines with probability < 1

Counter machine:

r = input n, start line 1

1) inc(r)

2) dec(r) if zero goto 1

3) inc(s)

4) dec(s) if zero goto 2
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CRNs can simulate counter 
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initial state {n R, 1 L
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}
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r = input n, start line 1
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4) dec(s) if zero goto 2
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initial state {n R, 1 L
1
}

L
2
 + R → L
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L
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 → L
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2
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Counter machine:

r = input n, start line 1

1) inc(r)
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CRNs can simulate counter 
machines with probability < 1

CRN: 

initial state {n R, 1 L
1
}

L
2
 + R → L

3

L
3
 → L

4
 + S

L
4
 + S → L

5

L
1
 → L

2
 + R

;  L
4
 → L

2

;  L
2
 → L

1

Counter machine:

r = input n, start line 1

1) inc(r)

2) dec(r) if zero goto 1

3) inc(s)

4) dec(s) if zero goto 2
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CRNs can simulate counter 
machines with probability < 1

CRN: 

initial state {n R, 1 L
1
}

Need to be 
very slow!

L
2
 + R → L

3

L
3
 → L

4
 + S

L
4
 + S → L

5

L
1
 → L

2
 + R

;  L
4
 → L

2

;  L
2
 → L

1

Counter machine:

r = input n, start line 1

1) inc(r)

2) dec(r) if zero goto 1

3) inc(s)

4) dec(s) if zero goto 2
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F + C
1
 → F + C

2
B + C

2
 → B + C

1

F + C
2
 → F + C

3
B + C

3
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How to slow down reaction L
2
 → L

1
?

Use a clock:

1 C
1
, 1 F, n B

F + C
1
 → F + C

2
B + C

2
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1

F + C
2
 → F + C

3
B + C

3
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C
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2
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1
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1

…
C

1
C

2
C

3
C

k
…

1 1 1 1

nnnn
reverse-biased random walk

C
k
 appears after 

expected time ≈ nk-1 

 E[time for L
2
 + R → L

3
] ≤ n



 206

Probability 1 computation



 207

Probability 1 computation

● Errr... isn't that stable computation?



 208

Probability 1 computation

● Errr... isn't that stable computation?

● With finite state space (e.g. population protocols), yes.



 209

Probability 1 computation

● Errr... isn't that stable computation?
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● With finite state space (e.g. population protocols), yes.
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Probability 1 computation

● Errr... isn't that stable computation?

● With finite state space (e.g. population protocols), yes.

Consider... Y → 2Y

Y → 

2

1 initial state {1Y,1N}

Theorem: All (Turing) computable predicates can be 
computed by a CRN with probability 1.
(Cummings, Doty, Soloveichik, DNA 2014)
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