Agents and reagents: Distributed computing in a test tube

David Doty, David Soloveichik

DISC 2014 Tutorial

The software of life

How does the cell compute?

The software of life

How does the cell compute?

chemistry / geometry

The software of life

How does the cell eompute?

What is possible to compute with chemistry? geometry

Chemical reaction networks (CRN)

Chemical reaction networks (CRN)

$$
R \rightarrow P_{1}+P_{2}
$$

Chemical reaction networks (CRN)

$$
\begin{aligned}
R & \rightarrow P_{1}+P_{2} \\
A+B & \rightarrow C
\end{aligned}
$$

Chemical reaction networks (CRN)

$$
\begin{aligned}
& R \rightarrow P_{1}+P_{2} \\
& A+B \rightarrow C \\
& X+Y \rightarrow X+Z
\end{aligned}
$$

Chemical reaction networks (CRN)

$$
\begin{aligned}
& R \rightarrow P_{1}+P_{2} \\
& A+B \rightarrow C \\
& X+Y \rightarrow X+Z \\
& A+Z \rightarrow \\
& \substack{\text { (anonymous } \\
\text { waste product) }}
\end{aligned}
$$

Chemical reaction networks (CRN)

$$
\begin{aligned}
& R \rightarrow P_{1}+P_{2} \\
& A+B \rightarrow C \\
& X+Y \rightarrow X+Z \\
& A+Z \rightarrow \underset{\substack{\text { (anonymous } \\
\text { waste product) }}}{X} \rightarrow 2 X \\
& \text { (anonymous }
\end{aligned}
$$

fuel source)

Chemical reaction networks (CRN)

$$
\begin{gathered}
R \xrightarrow{2.5} P_{1}+P_{2} \\
A+B \xrightarrow{1} C \\
X+Y \xrightarrow{5} X+Z \\
A+Z \xrightarrow{0.1} \underbrace{}_{\substack{\text { (anonymous } \\
\text { waste product) }}} X \xrightarrow{0.1} 2 X
\end{gathered}
$$

(anonymous
fuel source)

What behavior is possible for chemistry in principle?

What behavior is possible for chemistry in principle?

found in biology

What behavior is possible for chemistry in principle?

formally definable CRNs

found in biology inspiration

What behavior is possible for chemistry in principle?

formally definable CRNs this talk
actual chemicals
ultimate interest
found in biology

Can we compute with chemistry?

"Not every crazy CRN you scribble on paper describes actual chemicals!"

Can we compute with chemistry?

"Not every crazy CRN you scribble on paper describes actual chemicals!"
Response to objection: Soloveichik et al. [PNAS 2010] showed a physical implementation of every CRN, using DNA strand displacement

Can we compute with chemistry?

"Not every crazy CRN you scribble on paper describes actual chemicals!"
Response to objection: Soloveichik et al. [PNAS 2010] showed a physical implementation of every CRN, using DNA strand displacement

$$
X_{1}+X_{2} \rightarrow X_{3}
$$

Can we compute with chemistry?

"Not every crazy CRN you scribble on paper describes actual chemicals!"
Response to objection: Soloveichik et al. [PNAS 2010] showed a physical implementation of every CRN, using DNA strand displacement

$$
X_{1}+X_{2} \rightarrow X_{3}
$$

Can we compute with chemistry?

"Not every crazy CRN you scribble on paper describes actual chemicals!"
Response to objection: Soloveichik et al. [PNAS 2010] showed a physical implementation of every CRN, using DNA strand displacement

$$
X_{1}+X_{2} \rightarrow X_{3}
$$

Can we compute with chemistry?

"Not every crazy CRN you scribble on paper describes actual chemicals!"
Response to objection: Soloveichik et al. [PNAS 2010] showed a physical implementation of every CRN, using DNA strand displacement

$$
X_{1}+X_{2} \rightarrow X_{3}
$$

Why compute with chemistry?

versus

Why compute with chemistry?

versus

speed?

Why compute with chemistry?

versus
slower
speed?

faster

Why compute with chemistry?

versus
slower

faster

Why compute with chemistry?

slower
versus

component size?

faster

Why compute with chemistry?

versus

faster
component size?

Why compute with chemistry?

$\approx 10-100 \mathrm{~nm}$
versus

faster
$\approx 10-100 \mathrm{~nm}$

Why compute with chemistry?

slower
$\approx 10-100 \mathrm{~nm}$
versus
 compo snt size?

faster
$\approx 10-100 \mathrm{~nm}$

Why compute with chemistry?

versus

slower
$\approx 10-100 \mathrm{~nm}$

compo Ent size?
$\approx 10-100 \mathrm{~nm}$
yes
Compatible with biological or other "wet environments"?
not easily
cells

"smart drug" to detect microRNAs levels of cell and release appropriate drug in response
bioreactors

"chemical controller" to increase yield of metabolically produced

What does it mean to compute with chemistry?

CRNs have a wide range of behaviors:

What does it mean to compute with chemistry?

CRNs have a wide range of behaviors:

What does it mean to compute with chemistry?

CRNs have a wide range of behaviors:

What does it mean to compute with chemistry?

CRNs have a wide range of behaviors:

What does it mean to compute with chemistry?

CRNs have a wide range of behaviors:

What does it mean to compute with chemistry?

CRNs have a wide range of behaviors:

Discrete (stochastic) kinetic CRN model

- species: $\{X, Y, \ldots\}$

Discrete (stochastic) kinetic CRN model

- species: $\{X, Y, \ldots\}$
- reactions:

$$
\begin{aligned}
& X \xrightarrow{k_{1}} W+2 Y+Z \\
& A+B \xrightarrow{k_{2}} X
\end{aligned}
$$

Discrete (stochastic) kinetic CRN model

- species: $\{X, Y, \ldots\}$ - state: integer vector of counts $\mathbf{s}=(\# X, \# Y, \ldots)$
- reactions:

$$
\begin{aligned}
& X \xrightarrow{k_{1}} W+2 Y+Z \\
& A+B \xrightarrow{k_{2}} X
\end{aligned}
$$

Discrete (stochastic) kinetic CRN model

- species: $\{X, Y, \ldots\}$ - state: integer vector of counts $\mathbf{s}=(\# X, \# Y, \ldots)$
- reactions:
- rate of reaction:

$$
\begin{array}{ll}
X \xrightarrow{k_{1}} W+2 Y+Z & k_{1} \bullet \# X \\
A+B \xrightarrow{k_{2}} X & k_{2} \bullet \# A \bullet \# B / \text { volume }
\end{array}
$$

Discrete (stochastic) kinetic CRN model

- species: $\{X, Y, \ldots\}$ - state: integer vector of counts $\mathbf{s}=(\# X, \# Y, \ldots)$
- reactions:
- rate of reaction:

$$
\begin{array}{ll}
X \xrightarrow{k_{1}} W+2 Y+Z & k_{1} \bullet \# X \\
A+B \xrightarrow{k_{2}} X & k_{2} \bullet \# A \bullet \# B / \text { volume }
\end{array}
$$

$\operatorname{Prob}\left[\right.$ some reaction] $=\frac{\text { rate of that reaction }}{\text { sum of all reaction rates }}$

Discrete (stochastic) kinetic CRN model

- species: $\{X, Y, \ldots\}$ - state: integer vector of counts $\mathbf{s}=(\# X, \# Y, \ldots)$
- reactions:
- rate of reaction:

$$
\begin{array}{ll}
X \xrightarrow{k_{1}} W+2 Y+Z & k_{1} \bullet \# X \\
A+B \xrightarrow{k_{2}} X & k_{2} \bullet \# A \bullet \# B / \text { volume }
\end{array}
$$

$\operatorname{Prob}\left[\right.$ some reaction] $=\frac{\text { rate of that reaction }}{\text { sum of all reaction rates }}$
time until next reaction = exponential random variable

Population protocols

n finite-state agents

(q)
(r)
(q)
(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

Population protocols

n finite-state agents repeatedly pick pair to interact

$$
\begin{align*}
& \delta(q, r)=(s, t) \tag{r}\\
& \delta(s, r)=(q, q)
\end{align*}
$$

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

Population protocols

n finite-state agents repeatedly pick pair to interact

$$
\begin{aligned}
& \delta(q, r)=(s, t) \\
& \delta(s, r)=(q, q)
\end{aligned}
$$

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

Population protocols

n finite-state agents
repeatedly pick pair to interact

$$
\begin{align*}
& \delta(q, r)=(s, t) \\
& \delta(s, r)=(q, q)
\end{align*}
$$

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

Population protocols

n finite-state agents repeatedly pick pair to interact

$$
\begin{align*}
& \delta(q, r)=(s, t) \\
& \delta(s, r)=(q, q)
\end{align*}
$$

r
(q)
(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

Population protocols

n finite-state agents
repeatedly pick pair to interact

$$
\begin{align*}
& \delta(q, r)=(s, t) \\
& \delta(s, r)=(q, q) \tag{q}
\end{align*}
$$

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

Population protocols

n finite-state agents repeatedly pick pair to interact

$$
\begin{aligned}
& \delta(q, r)=(s, t) \\
& \delta(s, r)=(q, q)
\end{aligned}
$$

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

Population protocols

n finite-state agents
repeatedly pick pair to interact

$$
\begin{align*}
& \delta(q, r)=(s, t) \\
& \delta(s, r)=(q, q)
\end{align*}
$$

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

Population protocols

n finite-state agents
repeatedly pick pair to interact

$$
\begin{align*}
& \delta(q, r)=(s, t) \\
& \delta(s, r)=(q, q)
\end{align*}
$$

"parallel time" = \# of interactions / n

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

A PP is a CRN such that...

A PP is a CRN such that...

- all reactions have 2 reactants and 2 products

A PP is a CRN such that...

- all reactions have 2 reactants and 2 products
- all rate constants are 1

A PP is a CRN such that...

- all reactions have 2 reactants and 2 products
- all rate constants are 1
- volume = number of molecules
(constant over time because of first constraint)

A PP is a CRN such that...

- all reactions have 2 reactants and 2 products
- all rate constants are 1
- volume = number of molecules
(constant over time because of first constraint)
- order of reactants can matter
(there's a "sender" and a "receiver" molecule)

A PP is a CRN such that...

- all reactions have 2 reactants and 2 products
- all rate constants are 1
- volume = number of molecules
(constant over time because of first constraint)
- order of reactants can matter
(there's a "sender" and a "receiver" molecule)
- sender/receiver states uniquely determine products
(e.g., cannot have $A+B \rightarrow C+D$ and $A+B \rightarrow X+Y$)

Computation with CRNs: Outline

- Stable computation ("deterministic")
- Randomized computation:
- probability of error = small
- probability of error $=0$

Stable (deterministic) CRN computation

Stable CRN predicate computation (definition)

task: compute predicate $p\left(x_{1}, \ldots, x_{k}\right), \quad x_{1}, \ldots, x_{k} \in \mathbb{N}$

Stable CRN predicate computation (definition)

task: compute predicate $p\left(x_{1}, \ldots, x_{k}\right), \quad x_{1}, \ldots, x_{k} \in \mathbb{N}$
votes: two disjoint subsets of species: "yes" and "no" voters

Stable CRN predicate computation (definition)

task: compute predicate $p\left(x_{1}, \ldots, x_{k}\right), \quad x_{1}, \ldots, x_{k} \in \mathbb{N}$
votes: two disjoint subsets of species: "yes" and "no" voters output $\varphi(\mathbf{s})$ of state s : the consensus vote (if voters unanimous)

Stable CRN predicate computation (definition)

task: compute predicate $p\left(x_{1}, \ldots, x_{k}\right), \quad x_{1}, \ldots, x_{k} \in \mathbb{N}$
votes: two disjoint subsets of species: "yes" and "no" voters output $\varphi(\mathbf{s})$ of state s : the consensus vote (if voters unanimous) initial state: $\# X_{1}=x_{1}, \ldots, \# X_{k}=x_{k}$, constant counts of other species

Stable CRN predicate computation (definition)

task: compute predicate $p\left(x_{1}, \ldots, x_{k}\right), \quad x_{1}, \ldots, x_{k} \in \mathbb{N}$ votes: two disjoint subsets of species: "yes" and "no" voters output $\varphi(\mathbf{s})$ of state s : the consensus vote (if voters unanimous) initial state: $\# X_{1}=x_{1}, \ldots, \# X_{k}=x_{k}$, constant counts of other species output-stable state: all states reachable from it have same output

Stable CRN predicate computation (definition)

task: compute predicate $p\left(x_{1}, \ldots, x_{k}\right), \quad x_{1}, \ldots, x_{k} \in \mathbb{N}$ votes: two disjoint subsets of species: "yes" and "no" voters output $\varphi(\mathbf{s})$ of state s : the consensus vote (if voters unanimous) initial state: $\# X_{1}=x_{1}, \ldots, \# X_{k}=x_{k}$, constant counts of other species output-stable state: all states reachable from it have same output stable computation: for all states \mathbf{s} reachable from the initial state \mathbf{x}, a correct output-stable state \mathbf{o} is reachable from \mathbf{s}

Stable CRN predicate computation (definition)

task: compute predicate $p\left(x_{1}, \ldots, x_{k}\right), \quad x_{1}, \ldots, x_{k} \in \mathbb{N}$ votes: two disjoint subsets of species: "yes" and "no" voters output $\varphi(s)$ of state s : the consensus vote (if voters unanimous) initial state: $\# X_{1}=x_{1}, \ldots, \# X_{k}=x_{k}$, constant counts of other species output-stable state: all states reachable from it have same output stable computation: for all states \mathbf{s} reachable from the initial state \mathbf{x}, a correct output-stable state \mathbf{o} is reachable from \mathbf{s}

Stable CRN predicate computation (definition)

task: compute predicate $p\left(x_{1}, \ldots, x_{k}\right), \quad x_{1}, \ldots, x_{k} \in \mathbb{N}$ votes: two disjoint subsets of species: "yes" and "no" voters output $\varphi(\mathbf{s})$ of state s : the consensus vote (if voters unanimous) initial state: $\# X_{1}=x_{1}, \ldots, \# X_{k}=x_{k}$, constant counts of other species output-stable state: all states reachable from it have same output stable computation: for all states \mathbf{s} reachable from the initial state \mathbf{x}, a correct output-stable state \mathbf{o} is reachable from \mathbf{s}

Stable CRN predicate computation (definition)

task: compute predicate $p\left(x_{1}, \ldots, x_{k}\right), \quad x_{1}, \ldots, x_{k} \in \mathbb{N}$ votes: two disjoint subsets of species: "yes" and "no" voters output $\varphi(\mathbf{s})$ of state s: the consensus vote (if voters unanimous) initial state: $\# X_{1}=x_{1}, \ldots, \# X_{k}=x_{k^{\prime}}$, constant counts of other species output-stable state: all states reachable from it have same output stable computation: for all states \mathbf{s} reachable from the initial state \mathbf{x}, a correct output-stable state \mathbf{o} is reachable from \mathbf{s}

Stable CRN predicate computation (definition)

task: compute predicate $p\left(x_{1}, \ldots, x_{k}\right), \quad x_{1}, \ldots, x_{k} \in \mathbb{N}$ votes: two disjoint subsets of species: "yes" and "no" voters output $\varphi(\mathbf{s})$ of state s: the consensus vote (if voters unanimous) initial state: $\# X_{1}=x_{1}, \ldots, \# X_{k}=x_{k^{\prime}}$, constant counts of other species output-stable state: all states reachable from it have same output stable computation: for all states \mathbf{s} reachable from the initial state \mathbf{x}, a correct output-stable state \mathbf{o} is reachable from \mathbf{s}

Stable CRN predicate computation (definition)

task: compute predicate $p\left(x_{1}, \ldots, x_{k}\right), \quad x_{1}, \ldots, x_{k} \in \mathbb{N}$ votes: two disjoint subsets of species: "yes" and "no" voters output $\varphi(\mathbf{s})$ of state s: the consensus vote (if voters unanimous) initial state: $\# X_{1}=x_{1}, \ldots, \# X_{k}=x_{k^{\prime}}$, constant counts of other species output-stable state: all states reachable from it have same output stable computation: for all states \mathbf{s} reachable from the initial state \mathbf{x}, a correct output-stable state \mathbf{o} is reachable from \mathbf{s}

Stable CRN predicate computation (definition)

task: compute predicate $p\left(x_{1}, \ldots, x_{k}\right), \quad x_{1}, \ldots, x_{k} \in \mathbb{N}$ votes: two disjoint subsets of species: "yes" and "no" voters output $\varphi(\mathbf{s})$ of state s : the consensus vote (if voters unanimous) initial state: $\# X_{1}=x_{1}, \ldots, \# X_{k}=x_{k^{\prime}}$, constant counts of other species output-stable state: all states reachable from it have same output stable computation: for all states \mathbf{s} reachable from the initial state \mathbf{x}, a correct output-stable state \mathbf{o} is reachable from \mathbf{s}

Stable CRN predicate computation (definition)

task: compute predicate $p\left(x_{1}, \ldots, x_{k}\right), \quad x_{1}, \ldots, x_{k} \in \mathbb{N}$ votes: two disjoint subsets of species: "yes" and "no" voters output $\varphi(\mathbf{s})$ of state s : the consensus vote (if voters unanimous) initial state: $\# X_{1}=x_{1}, \ldots, \# X_{k}=x_{k^{\prime}}$, constant counts of other species output-stable state: all states reachable from it have same output stable computation: for all states \mathbf{s} reachable from the initial state \mathbf{x}, a correct output-stable state \mathbf{o} is reachable from \mathbf{s}

Stable CRN predicate computation (alternate definition)

Stable CRN predicate computation (alternate definition)

execution: infinite sequence of states $\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots$, where \mathbf{s}_{i+1} is \mathbf{s}_{i} after applying a reaction (allow "null" reaction for convenience)

Stable CRN predicate computation (alternate definition)

execution: infinite sequence of states $\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots$, where \mathbf{s}_{i+1} is \mathbf{s}_{i} after applying a reaction (allow "null" reaction for convenience) fair execution: every state always reachable is infinitely often reached

Stable CRN predicate computation (alternate definition)

execution: infinite sequence of states $\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots$, where \mathbf{s}_{i+1} is \mathbf{s}_{i} after applying a reaction (allow "null" reaction for convenience) fair execution: every state always reachable is infinitely often reached
stable computation: predicate $p\left(x_{1}, \ldots, x_{k}\right)$ is stably computed if every fair execution contains an output stable state $\mathbf{0}$ with $\varphi(\mathbf{0})=p\left(x_{1}, \ldots, x_{k}\right)$

Stable CRN predicate computation (example)

predicate: $p(x)$: parity of x

Stable CRN predicate computation (example)

predicate: $p(x)$: parity of x
initial state: $\{x X, 1 N\}$

(N)
x

Stable CRN predicate computation (example)

predicate: $p(x)$: parity of x
initial state: $\{x X, 1 N\}$
reactions: $N+X \rightarrow Y$
N
x
$Y+X \rightarrow N$

Stable CRN predicate computation (example)

predicate: $p(x)$: parity of x
initial state: $\{x X, 1 N\}$
x
reactions: $N+X \rightarrow Y$
Y
$Y+X \rightarrow N$

Stable CRN predicate computation (example)

predicate: $p(x)$: parity of x
initial state: $\{x X, 1 N\}$
X
reactions: $N+X \rightarrow Y$
(N)

$$
Y+X \rightarrow N
$$

Stable CRN predicate computation (example)

predicate: $p(x)$: parity of x
initial state: $\{x X, 1 N\}$
reactions: $N+X \rightarrow Y$

$$
Y+X \rightarrow N
$$

Stable CRN predicate computation (example)

predicate: $p\left(x_{1}, x_{2}\right): " x_{1}>x_{2}$ "?

Stable CRN predicate computation (example)

predicate: $p\left(x_{1}, x_{2}\right): " x_{1}>x_{2}$ "?
(${ }_{2}$
initial state: $\left\{x_{1} X_{1}, x_{2} X_{2}, 1 N\right\}$

X_{1}		X_{2}
X_{1}		X_{2}

$$
x_{2}
$$

Stable CRN predicate computation (example)

predicate: $p\left(x_{1}, x_{2}\right):$ " $x_{1}>x_{2}$ "?
(X2)
initial state: $\left\{x_{1} X_{1}, x_{2} X_{2}, 1 N\right\}$
(1

$$
X_{2}
$$

(N)
reactions: $N+X_{1} \rightarrow Y$
X
X_{2}
$Y+X_{2} \rightarrow N$

$$
x_{2}
$$

Stable CRN predicate computation (example)

predicate: $p\left(x_{1}, x_{2}\right): " x_{1}>x_{2}$ "?
X_{2}
initial state: $\left\{x_{1} X_{1}, x_{2} X_{2}, 1 N\right\}$
(1

$$
X_{2}
$$

reactions: $N+X_{1} \rightarrow Y$
X_{2}
$Y+X_{2} \rightarrow N$

$$
x_{2}
$$

Stable CRN predicate computation (example)

predicate: $p\left(x_{1}, x_{2}\right): " x_{1}>x_{2}$ "?
X_{2}
initial state: $\left\{x_{1} X_{1}, x_{2} X_{2}, 1 N\right\}$ X N
reactions: $N+X_{1} \rightarrow Y$

$$
x_{2}
$$

$Y+X_{2} \rightarrow N$

$$
x_{2}
$$

Stable CRN predicate computation (example)

predicate: $p\left(x_{1}, x_{2}\right)$: " $x_{1}>x_{2}$ "?
(${ }_{2}$
initial state: $\left\{x_{1} X_{1}, x_{2} X_{2}, 1 N\right\}$
reactions: $N+X_{1} \rightarrow Y$
$Y+X_{2} \rightarrow N$

$$
\begin{aligned}
& X_{2} \\
& X_{2}
\end{aligned}
$$

Stable CRN predicate computation (example)

predicate: $p\left(x_{1}, x_{2}\right):$ " $x_{1}>x_{2}$ "?
(${ }_{2}$
initial state: $\left\{x_{1} X_{1}, x_{2} X_{2}, 1 N\right\}$
reactions: $N+X_{1} \rightarrow Y$ (N) X_{2}
$Y+X_{2} \rightarrow N$

Stable CRN predicate computation (example)

predicate: $p\left(x_{1}, x_{2}\right)$: $x_{1}=x_{2}$ "?
initial state: $\left\{x_{1} X_{1}, x_{2} X_{2}, 1 Y\right\}$

Stable CRN predicate computation (example)

predicate: $p\left(x_{1}, x_{2}\right)$: $x_{1}=x_{2}$ "?
initial state: $\left\{x_{1} X_{1}, x_{2} X_{2}, 1 Y\right\}$
reactions: $X_{1}+X_{2} \rightarrow Y$

$$
\begin{aligned}
& Y+N \rightarrow Y \\
& X_{1}+Y \rightarrow X_{1}+N \\
& X_{2}+Y \rightarrow X_{2}+N
\end{aligned}
$$

Stable CRN function computation (example)

function: $f(x)=2 x$

Stable CRN function computation (example)

function: $f(x)=2 x$

$$
x
$$

x

Stable CRN function computation (example)

function: $f(x)=2 x$

$$
x
$$

reactions: $X \rightarrow 2 Y$
X
X

Stable CRN function computation (example)

function: $f(x)=2 x$

(Y)
reactions: $X \rightarrow 2 Y$
X
(

Stable CRN function computation (example)

function: $f(x)=2 x$

Stable CRN function computation (example)

function: $f(x)=2 x$
reactions: $X \rightarrow 2 Y$

Stable CRN function computation (example)

function: $f(x)=x / 2$

Stable CRN function computation (example)

function: $f(x)=x / 2$

Stable CRN function computation (example)

function: $f(x)=x / 2$
reactions: $2 X \rightarrow Y$

Stable CRN function computation (example)

function: $f(x)=x / 2$
reactions: $2 X \rightarrow Y$

$$
X \quad X \quad X
$$

Stable CRN function computation (example)

function: $f(x)=x / 2$
reactions: $2 X \rightarrow Y$
(Y) (x) x

Stable CRN function computation (example)

function: $f(x)=x / 2$
(Y)
reactions: $2 X \rightarrow Y$
(Y)

Stable CRN function computation (example)

function: $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$

Stable CRN function computation (example)

function: $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$
reactions: $X_{1} \rightarrow Y$
$X_{2} \rightarrow Y$

Stable CRN function computation (example)

function: $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}$

Stable CRN function computation (example)

function: $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}$
reactions: $X_{1} \rightarrow Y$

$$
X_{2}+Y \rightarrow
$$

Stable CRN function computation (example)

function: $f\left(x_{1}, x_{2}\right)=\min \left\{x_{1}, x_{2}\right\}$

Stable CRN function computation (example)

function: $f\left(x_{1}, x_{2}\right)=\min \left\{x_{1}, x_{2}\right\}$
reactions: $X_{1}+X_{2} \rightarrow Y$

Stable CRN function computation (example)

function: $f\left(x_{1}, x_{2}\right)=\max \left\{x_{1}, x_{2}\right\}$

Stable CRN function computation (example)

function: $f\left(x_{1}, x_{2}\right)=\max \left\{x_{1}, x_{2}\right\}=x_{1}+x_{2}-\min \left\{x_{1}, x_{2}\right\}$

Stable CRN function computation (example)

function: $f\left(x_{1}, x_{2}\right)=\max \left\{x_{1}, x_{2}\right\}=x_{1}+x_{2}-\min \left\{x_{1}, x_{2}\right\}$
reactions:

$$
\begin{aligned}
& X_{1} \rightarrow Y+X_{1}^{\prime} \\
& X_{2} \rightarrow Y+X_{2}^{\prime}
\end{aligned}
$$

Stable CRN function computation (example)

function: $f\left(x_{1}, x_{2}\right)=\max \left\{x_{1}, x_{2}\right\}=x_{1}+x_{2}-\min \left\{x_{1}, x_{2}\right\}$
reactions: $X_{1} \rightarrow Y+X_{1}{ }^{\prime}$

$$
\begin{aligned}
& X_{2} \rightarrow Y+X_{2}^{\prime} \\
& X_{1}^{\prime}+X_{2}^{\prime} \rightarrow K
\end{aligned}
$$

Stable CRN function computation (example)

function: $f\left(x_{1}, x_{2}\right)=\max \left\{x_{1}, x_{2}\right\}=x_{1}+x_{2}-\min \left\{x_{1}, x_{2}\right\}$
reactions: $X_{1} \rightarrow Y+X_{1}{ }^{\prime}$

$$
X_{2} \rightarrow Y+X_{2}^{\prime}
$$

$$
X_{1}^{\prime}+X_{2}^{\prime} \rightarrow K
$$

$$
K+Y \rightarrow
$$

Stable CRN predicate computation (example)

predicate: $p\left(x_{1}, x_{2}\right):$ " $3 x_{1}>x_{2} / 2$ "?
initial state: $\left\{x_{1} X_{1}, x_{2} X_{2}, 1 N\right\}$

Stable CRN predicate computation (example)

predicate: $p\left(x_{1}, x_{2}\right):$ " $3 x_{1}>x_{2} / 2$ "?
initial state: $\left\{x_{1} X_{1}, x_{2} X_{2}, 1 N\right\}$
reactions: $X_{1} \rightarrow 3 Z_{1}$

$$
2 X_{2} \rightarrow Z_{2}
$$

Stable CRN predicate computation (example)

predicate: $p\left(x_{1}, x_{2}\right)$: " $3 x_{1}>x_{2} / 2$ "?
initial state: $\left\{x_{1} X_{1}, x_{2} X_{2}, 1 N\right\}$
reactions: $X_{1} \rightarrow 3 Z_{1}$
$2 X_{2} \rightarrow Z_{2}$
$N+Z_{1} \rightarrow Y$
$Y+Z_{2} \rightarrow N$

Stable computation characterization

Theorem: A predicate is stably computed by a CRN if and only if it is semilinear.
(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
(Angluin, Aspnes, Eisenstat, PODC 2006)

Stable computation characterization

Theorem: A predicate is stably computed by a CRN if and only if it is semilinear.

"semilinear" = Boolean combination of threshold and mod tests

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
(Angluin, Aspnes, Eisenstat, PODC 2006)

Stable computation characterization

Theorem: A predicate is stably computed by a CRN if and only if it is semilinear.
"semilinear" = Boolean combination of threshold
and mod tests
(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
(Angluin, Aspnes, Eisenstat, PODC 2006)

Stable computation characterization

Theorem: A predicate is stably computed by a CRN if and only if it is semilinear.
"semilinear" = Boolean combination of threshold

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
(Angluin, Aspnes, Eisenstat, PODC 2006)

Stable computation characterization

Theorem: A predicate is stably computed by a CRN if and only if it is semilinear.
"semilinear" = Boolean combination of threshold

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)
(Angluin, Aspnes, Eisenstat, PODC 2006)
(Chen, Doty, Soloveichik, DNA 2012, for function computation)

Deciding output stability

Deciding output stability

- Each CRN has a set of p vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ such that \mathbf{o} is output stable if and only if no $\mathbf{u}_{i} \leq \mathbf{0}$

Deciding output stability

- Each CRN has a set of p vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ such that \mathbf{o} is output stable if and only if no $\mathbf{u}_{i} \leq \mathbf{0}$
- [Brijder, DNA 2014]: An algorithm can compute $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in time $O\left(p \log ^{s-0.5}(p) r s^{2} \log (u)\right)$ for population protocols

$$
\begin{aligned}
& u=\max _{i}\left|\mathbf{u}_{i}\right| \\
& s=\# \text { species } \\
& r=\text { \# reactions }
\end{aligned}
$$

Deciding output stability

- Each CRN has a set of p vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ such that \mathbf{o} is output stable if and only if no $\mathbf{u}_{i} \leq \mathbf{0}$
- [Brijder, DNA 2014]: An algorithm can compute $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in time $O\left(p \log ^{s-0.5}(p) r s^{2} \log (u)\right)$ for population protocols

$$
\begin{aligned}
& u=\max _{i}\left|\mathbf{u}_{i}\right| \\
& s=\# \text { species } \\
& r=\text { \# reactions }
\end{aligned}
$$

- Open question: how big can p and u get?

Deciding output stability

- Each CRN has a set of p vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ such that \mathbf{o} is output stable if and only if no $\mathbf{u}_{i} \leq \mathbf{0}$
- [Brijder, DNA 2014]: An algorithm can compute $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ in time $O\left(p \log ^{s-0.5}(p) r s^{2} \log (u)\right)$ for population protocols

$$
\begin{aligned}
& u=\max _{i}\left|\mathbf{u}_{i}\right| \\
& s=\# \text { species } \\
& r=\text { \# reactions }
\end{aligned}
$$

- Open question: how big can p and u get?
- Open question: extension to general CRNs?

Time complexity of stable computation

$n=\#$ molecules in initial state

Time complexity of stable computation

$n=\#$ molecules in initial state
$O(n)$ if initial state contains only input molecules
(Angluin, Aspnes, Eisenstat, PODC 2006, for predicates)
(Doty, Hajiaghayi, DNA 2013, for functions)

Time complexity of stable computation

$n=\#$ molecules in initial state
$O(n)$ if initial state contains only input molecules
(Angluin, Aspnes, Eisenstat, PODC 2006, for predicates)
(Doty, Hajiaghayi, DNA 2013, for functions)
O(polylog(n)) otherwise (if the CRN can start with a leader)
(Angluin, Aspnes, Eisenstat, DISC 2006, for predicates)
(Chen, Doty, Soloveichik, DNA 2012, for functions)

Time complexity of stable computation

$n=\#$ molecules in initial state
$O(n)$ if initial state contains only input molecules
(Angluin, Aspnes, Eisenstat, PODC 2006, for predicates)
(Doty, Hajiaghayi, DNA 2013, for functions)
O(polylog(n)) otherwise (if the CRN can start with a leader)
(Angluin, Aspnes, Eisenstat, DISC 2006, for predicates)
(Chen, Doty, Soloveichik, DNA 2012, for functions)
polylogarithmic time $=$ "fast" $=$ polynomial in binary expansion of n
linear time $=$ "slow" $=$ exponential in binary expansion of n

Time complexity in CRNs

time until next reaction = exponential r.v.
reaction
$X \rightarrow W+2 Y+Z$
$A+B \rightarrow X$
expected time
1 / \#X
volume / (\#A•\#B)

Time complexity (example)

$\stackrel{\{n X\}}{X \rightarrow Y+Y}$

Time complexity (example)

$$
\stackrel{\{n X\}}{X \rightarrow Y+Y}
$$

E[time to consume all $X]=$

Time complexity (example)

\{nX\}
$X \rightarrow Y+Y$
$\mathrm{E}[$ time to consume all $X]=\mathrm{E}[$ time to consume first $X]$
$+E[$ time to consume second X$]$
$+\mathrm{E}[$ time to consume third X$]$
$+\ldots$
$+\mathrm{E}[$ time to consume final X$]$

Time complexity (example)

\{nX\}
$X \rightarrow Y+Y$
$\mathrm{E}[$ time to consume all $X]=\mathrm{E}[$ time to consume first X]
$+\mathrm{E}[$ time to consume second X$]$
$+\mathrm{E}[$ time to consume third X$]$
$+\ldots$
$+\mathrm{E}[$ time to consume final X$]$
$=1 / n+1 /(n-1)+1 /(n-2)+\ldots+1 / 1$
$\approx \log n$

Time complexity (example)

$\{n X$, volume n $X+X \rightarrow Y$

E[time to consume all $X]=$

Time complexity (example)

$\{n X\}$, volume n
 $X+X \rightarrow Y$

$\mathrm{E}[$ time to consume all $X]=n / n^{2}+n /(n-2)^{2}+n /(n-4)^{2}+\ldots+n$ $<n\left(1 / 2^{2}+1 / 4^{2}+1 / 6^{2}+1 / 8^{2}+\ldots\right)$
$=O(n)$

Time complexity (example)

$\{n X\}$, volume n
 $X+X \rightarrow Y$

$\mathrm{E}[$ time to consume all $X]=n / n^{2}+n /(n-2)^{2}+n /(n-4)^{2}+\ldots+n$ $<n\left(1 / 2^{2}+1 / 4^{2}+1 / 6^{2}+1 / 8^{2}+\ldots\right)$
$=O(n)$

Time complexity (example)

$\{n X\}$, volume n
 $X+X \rightarrow Y$

$\mathrm{E}[$ time to consume all $X]=n / n^{2}+n /(n-2)^{2}+n /(n-4)^{2}+\ldots+n$ $<n\left(1 / 2^{2}+1 / 4^{2}+1 / 6^{2}+1 / 8^{2}+\ldots\right)$
$=O(n)$

Time complexity (leader election)

$\{n L\}$, volume n
$L+L \rightarrow L$

Time complexity (leader election)

$\{n L\}$, volume n
$L+L \rightarrow L$
$\mathrm{E}[$ time get to 1 L$]=O(n)$

Time complexity (leader election)

$\{n L\}$, volume n
$L+L \rightarrow L$
$\mathrm{E}[$ time get to 1 L$]=O(n)$

Is there a faster CRN?

Time complexity (leader election)

$\{n L\}$, volume n
$L+L \rightarrow L$

$E[$ time get to $1 L]=O(n)$

Is there a faster CRN?

- If we really abuse the CRN model, yes (use $2 X \rightarrow 3 X$)
- In mass-conserving CRNs, we don't know
- Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that seems to work in simulation
- If we require 0 probability of error, no (unpublished)

Time complexity (leader election)

$\{n L\}$, volume n
$L+L \rightarrow L$

$E[$ time get to $1 L]=O(n)$

Is there a faster CRN?

- If we really abuse the CRN model, yes (use $2 X \rightarrow 3 X$)
- In mass-conserving CRNs, we don't know
- Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that seems to work in simulation
- If we require 0 probability of error, no (unpublished)

Time complexity (leader election)

$\{n L\}$, volume n
$L+L \rightarrow L$

$E[$ time get to $1 L]=O(n)$

Is there a faster CRN?

- If we really abuse the CRN model, yes (use $2 X \rightarrow 3 X$)
- In mass-conserving CRNs, we don't know
- Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that seems to work in simulation
- If we require 0 probability of error, no (unpublished)

Time complexity (leader election)

$\{n L\}$, volume n
$L+L \rightarrow L$

$E[$ time get to $1 L]=O(n)$

Is there a faster CRN?

- If we really abuse the CRN model, yes (use $2 X \rightarrow 3 X$)
- In mass-conserving CRNs, we don't know
- Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that seems to work in simulation
- If we require 0 probability of error, no (unpublished)

What if we allow a small probability of error? (Randomized CRN computation)

Randomized CRNs are Turing universal

Randomized CRNs are Turing universal

Informal: A CRN can simulate a Turing machine with polynomial slowdown and small chance of error.
(Angluin, Aspnes, Eisenstat, DISC 2006) "in a sense" (Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)

Randomized CRNs are Turing universal

Informal: A CRN can simulate a Turing machine with polynomial slowdown and small chance of error.

Implication: CRN simulation algorithms are the fastest way to predict their behavior.

[^0]
Randomized CRNs are Turing universal

Informal: A CRN can simulate a Turing machine with polynomial slowdown and small chance of error.

Implication: CRN simulation algorithms are the fastest way to predict their behavior.

Formal: For each TM M, there is a CRN C so that, for each $\varepsilon>0$ and natural number n, there is an initial state \mathbf{x} of C so that C simulates $M(n)$ with probability ε of error, and expected time poly $\left(s^{\bullet} t\right)$, where t and s are the time and space usage of $M(n)$.
(Angluin, Aspnes, Eisenstat, DISC 2006) "in a sense"
(Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)

Counter (register) machine

Counter (register) machine

Counter (register) machine

Counter (register) machine

1) $\operatorname{dec}(r)$
2) inc(s)
3) inc(s)
4) inc(s)
5) $\mathrm{dec}(\mathrm{t})$

t
6) inc(s)

Counter (register) machine

1) $\mathrm{dec}(\mathrm{r})$
2) inc(s)
3) inc(s)
4) inc(s)
5) $\mathrm{dec}(\mathrm{t})$
"input" counter

t
6) $i n c(s)$

Counter (register) machine

1) $\mathrm{dec}(\mathrm{r})$
2) inc(s)
3) inc(s)
4) inc(s)
5) $\mathrm{dec}(\mathrm{t})$
t

6) inc(s)

Counter (register) machine

1) $\mathrm{dec}(\mathrm{r})$
2) $i n c(s)$
3) inc(s)
4) inc(s)
5) $\mathrm{dec}(\mathrm{t})$

t
6) inc(s)

Counter (register) machine

1) $\mathrm{dec}(\mathrm{r})$
2) $i n c(s)$
3) inc(s)
4) inc(s)
5) $\mathrm{dec}(\mathrm{t})$

t
6) inc(s)

Counter (register) machine

1) $\operatorname{dec}(r)$
2) inc(s)
3) inc(s)
4) inc(s)
5) $\mathrm{dec}(\mathrm{t})$

t
6) inc(s)

Counter (register) machine

1) $\operatorname{dec}(r)$
2) inc(s)
3) inc(s)
4) inc(s)
5) $\mathrm{dec}(\mathrm{t})$
6) inc(s)

Counter (register) machine

1) $\mathrm{dec}(\mathrm{r})$
2) inc(s)
3) inc(s)
4) inc(s)
5) $\mathrm{dec}(\mathrm{t})$

t
6) inc(s)

Counter (register) machine

1) $\mathrm{dec}(\mathrm{r})$
2) inc(s)
3) inc(s)
4) inc(s)
5) $\mathrm{dec}(\mathrm{t})$

t
6) inc(s)

Counter (register) machine

1) $\operatorname{dec}(r)$
2) inc(s)
3) inc(s)
4) inc(s)
5) $\mathrm{dec}(\mathrm{t})$
6) inc(s)

Counter (register) machine

1) $\operatorname{dec}(r)$ if empty goto 6
2) inc(s)
3) inc(s)
4) inc(s)
5) $\operatorname{dec}(\mathrm{t})$ if empty goto 1
6) inc(s)

Counter (register) machine

1) $\operatorname{dec}(r)$ if empty goto 6
2) inc(s)
3) inc(s)
4) inc(s)
5) $\operatorname{dec}(\mathrm{t})$ if empty goto 1
6) inc(s)

t

Counter (register) machine

1) $\operatorname{dec}(r)$ if empty goto 6
2) inc(s)
3) inc(s)
4) inc(s)
5) $\operatorname{dec}(\mathrm{t})$ if empty goto 1
6) inc(s)

Counter (register) machine

1) $\operatorname{dec}(r)$ if empty goto 6
2) inc(s)
3) inc(s)
4) inc(s)
5) $\operatorname{dec}(\mathrm{t})$ if empty goto 1
6) inc(s)

Counter (register) machine

1) $\operatorname{dec}(r)$ if empty goto 6
2) inc(s)
3) inc(s)
4) inc(s)
5) $\operatorname{dec}(\mathrm{t})$ if empty goto 1
6) inc(s)

Counter (register) machine

1) $\operatorname{dec}(r)$ if empty goto 6
2) inc(s)
3) inc(s)
4) inc(s)
5) $\operatorname{dec}(\mathrm{t})$ if empty goto 1
6) inc(s)

Counter (register) machine

1) $\operatorname{dec}(r)$ if empty goto 6
2) inc(s)
3) inc(s)
4) inc(s)
5) $\operatorname{dec}(\mathrm{t})$ if empty goto 1
6) inc(s)

Counter (register) machine

1) $d e c(r)$ if empty goto 6
2) inc(s)
3) inc(s)
4) inc(s)
5) $\operatorname{dec}(\mathrm{t})$ if empty goto 1
6) inc(s)

Counter (register) machine

1) $d e c(r)$ if empty goto 6
2) inc(s)
3) inc(s)
4) inc(s)
5) $\operatorname{dec}(\mathrm{t})$ if empty goto 1
6) inc(s)

Counter (register) machine

1) $d e c(r)$ if empty goto 6
2) inc(s)
3) inc(s)
4) inc(s)
5) $\operatorname{dec}(\mathrm{t})$ if empty goto 1
6) inc(s)

Counter (register) machine

1) $d e c(r)$ if empty goto 6
2) inc(s)
3) inc(s)
4) inc(s)
5) $\operatorname{dec}(\mathrm{t})$ if empty goto 1
6) inc(s)

Counter (register) machine

1) $\operatorname{dec}(r)$ if empty goto 6
2) inc(s)
3) inc(s)
4) inc(s)
5) $\operatorname{dec}(\mathrm{t})$ if empty goto 1
6) $i n c(s)$

Counter (register) machine

1) $\operatorname{dec}(r)$ if empty goto 6
2) inc(s)
3) inc(s)
4) inc(s)
5) $\operatorname{dec}(\mathrm{t})$ if empty goto 1
6) $i n c(s)$

Counter (register) machine

1) $\operatorname{dec}(r)$ if empty goto 6
2) inc(s)
3) inc(s)
4) inc(s)
5) $\operatorname{dec}(\mathrm{t})$ if empty goto 1
6) inc(s) HALT

Counter (register) machine

1) $\operatorname{dec}(r)$ if empty goto 6
2) inc(s)
3) inc(s)
4) inc(s)
5) $\operatorname{dec}(\mathrm{t})$ if empty goto 1
6) inc(s)
computes $f(n)=3 n+1$ HALT

CRNs can simulate counter machines with probability < 1

CRNs can simulate counter machines with probability < 1

Counter machine:
$r=$ input n, start line 1

1) inc(r)
2) $d e c(r)$ if zero goto 1
3) $\operatorname{inc}(\mathrm{s})$
4) $d e c(s)$ if zero goto 2

CRNs can simulate counter machines with probability < 1

Counter machine:
$r=\operatorname{input} n$, start line 1

1) inc(r)
2) $d e c(r)$ if zero goto 1
3) inc(s)
4) $d e c(s)$ if zero goto 2

CRN: initial state $\left\{n R, 1 L_{1}\right\}$

CRNs can simulate counter machines with probability < 1

Counter machine:
$r=\operatorname{input} n$, start line 1

1) inc(r)
2) $\operatorname{dec}(\mathrm{r})$ if zero goto 1
3) inc(s)
4) $d e c(s)$ if zero goto 2

CRN: initial state $\left\{n R, 1 L_{1}\right\}$

$$
L_{1} \rightarrow L_{2}+R
$$

CRNs can simulate counter machines with probability < 1

Counter machine:
$r=$ input n, start line 1

1) inc(r)
2) $\operatorname{dec}(\mathrm{r})$ if zero goto 1
3) inc(s)
4) $d e c(s)$ if zero goto 2

CRN:
initial state $\left\{n R, 1 L_{1}\right\}$

$$
L_{1} \rightarrow L_{2}+R
$$

$L_{2}+R \rightarrow L_{3}$

CRNs can simulate counter machines with probability < 1

Counter machine:
$r=$ input n, start line 1

1) inc(r)
2) $d e c(r)$ if zero goto 1
3) inc(s)
4) $d e c(s)$ if zero goto 2

CRN:
initial state $\left\{n R, 1 L_{1}\right\}$

$$
\begin{aligned}
& L_{1} \rightarrow L_{2}+R \\
& L_{2}+R \rightarrow L_{3}
\end{aligned}
$$

CRNs can simulate counter machines with probability < 1

Counter machine:
$r=\operatorname{input} n$, start line 1

1) inc(r)
2) $d e c(r)$ if zero goto 1
3) inc(s)
4) $\operatorname{dec}(\mathrm{s})$ if zero goto 2

CRN:

initial state $\left\{n R, 1 L_{1}\right\}$

$$
L_{1} \rightarrow L_{2}+R
$$

$$
L_{2}+R \rightarrow L_{3} ; L_{2} \rightarrow L_{1}
$$

CRNs can simulate counter machines with probability < 1

Counter machine:
$r=$ input n, start line 1

1) inc(r)
2) $d e c(r)$ if zero goto 1
3) inc(s)
4) $d e c(s)$ if zero goto 2

CRN:

initial state $\left\{n R, 1 L_{1}\right\}$

$$
\begin{aligned}
& L_{1} \rightarrow L_{2}+R \\
& L_{2}+R \rightarrow L_{3} ; L_{2} \rightarrow L_{1} \\
& L_{3} \rightarrow L_{4}+S \\
& L_{4}+S \rightarrow L_{5} ; L_{4} \rightarrow L_{2}
\end{aligned}
$$

CRNs can simulate counter machines with probability < 1

Counter machine:
$r=\operatorname{input} n$, start line 1

1) $\mathrm{inc}(\mathrm{r})$
2) $d e c(r)$ if zero goto 1
3) inc(s)
4) $d e c(s)$ if zero goto 2

CRN:

initial state $\left\{n R, 1 L_{1}\right\}$

$$
\begin{aligned}
& L_{1} \rightarrow L_{2}+R \\
& L_{2}+R \rightarrow L_{3} \\
& L_{3} \rightarrow L_{4}+S \\
& L_{2}+L_{2} \rightarrow L_{1} \\
& L_{4}+S \rightarrow L_{5} \\
& \text { Need to be be } \\
& ; L_{4} \rightarrow L_{2}
\end{aligned}
$$

How to slow down reaction $L_{2} \rightarrow L_{1}$?

How to slow down reaction $L_{2} \rightarrow L_{1}$?

Use a clock:
$1 C_{1}, 1 F, n B$

How to slow down reaction $L_{2} \rightarrow L_{1}$?

 Use a clock:$1 C_{1}, 1 F, n B$

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$

How to slow down reaction $L_{2} \rightarrow L_{1}$?

 Use a clock:$1 C_{1}, 1 F, n B$

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$

reverse-biased random walk

How to slow down reaction $L_{2} \rightarrow L_{1}$?

 Use a clock:$1 C_{1}, 1 F, n B$

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$

C_{k} appears after expected time $\approx n^{k-1}$
reverse-biased random walk

How to slow down reaction $L_{2} \rightarrow L_{1}$?

 Use a clock: $1 C_{1}, 1 F, n B$$$
C_{k}+L_{2} \rightarrow C_{1}+L_{1}
$$

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$

C_{k} appears after expected time $\approx n^{k-1}$
reverse-biased random walk

How to slow down reaction $L_{2} \rightarrow L_{1}$?

 Use a clock:$1 C_{1}, 1 F, n B$

$$
C_{k}+L_{2} \rightarrow C_{1}+L_{1}
$$

$$
\begin{array}{ll}
F+C_{1} \rightarrow F+C_{2} & B+C_{2} \rightarrow B+C_{1} \\
F+C_{2} \rightarrow F+C_{3} & B+C_{3} \rightarrow B+C_{2}
\end{array}
$$

C_{k} appears after expected time $\approx n^{k-1}$
reverse-biased random walk

Probability 1 computation

Probability 1 computation

- Errr... isn't that stable computation?

Probability 1 computation

- Errr... isn't that stable computation?
- With finite state space (e.g. population protocols), yes.

Probability 1 computation

- Errr... isn't that stable computation?
- With finite state space (e.g. population protocols), yes.

Consider...

$$
\begin{aligned}
& Y \xrightarrow{2} 2 Y \\
& Y \xrightarrow{1} \\
& \xrightarrow{1} Y
\end{aligned}
$$

Probability 1 computation

- Errr... isn't that stable computation?
- With finite state space (e.g. population protocols), yes.

Consider...

$$
\begin{aligned}
& Y \xrightarrow{2} 2 Y \\
& Y \xrightarrow{1}
\end{aligned}
$$

initial state $\{1 Y, 1 N\}$

Probability 1 computation

- Errr... isn't that stable computation?
- With finite state space (e.g. population protocols), yes.

Consider... $Y \xrightarrow{2} 2 Y$

$$
Y \xrightarrow{1}
$$

initial state $\{1 Y, 1 N\}$

Theorem: All (Turing) computable predicates can be computed by a CRN with probability 1.
(Cummings, Doty, Soloveichik, DNA 2014)

[^0]: (Angluin, Aspnes, Eisenstat, DISC 2006) "in a sense" (Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008)

