Agents and reagents: Distributed computing in a test tube

David Doty, David Soloveichik

DISC 2014 Tutorial

The software of life

How does the cell compute?

The software of life

How does the cell compute?

chemistry / geometry

The software of life

How does the cell compute?

What is possible to compute with chemistry? geometry

 $R \rightarrow P_1 + P_2$

 $R \rightarrow P_1 + P_2$

7

 $A + B \rightarrow C$

 $R \rightarrow P_1 + P_2$

 $A + B \rightarrow C$

 $X + Y \rightarrow X + Z$

- $R \rightarrow P_1 + P_2$
- $A + B \rightarrow C$

$X + Y \rightarrow X + Z$

 $A + Z \rightarrow$

(anonymous waste product)

- $R \rightarrow P_1 + P_2$
- $A + B \rightarrow C$

$X + Y \rightarrow X + Z$

$A + Z \rightarrow$

(anonymous waste product)

 $X \rightarrow 2X$

(anonymous fuel source)

 $R \xrightarrow{2.5} P_1 + P_2$

 $A + B \xrightarrow{1} C$

 $X + Y \xrightarrow{5} X + Z$

 $A + Z \xrightarrow{0.1}$

(anonymous waste product)

11

 $X \xrightarrow{0.1} 2X$

(anonymous fuel source)

What behavior is possible for chemistry in principle?

What behavior is possible for chemistry in principle?

What behavior is possible for chemistry in principle?

"Not every crazy CRN you scribble on paper describes actual chemicals!"

"Not every crazy CRN you scribble on paper describes actual chemicals!"

Response to objection: Soloveichik et al. [*PNAS* 2010] showed a physical implementation of <u>every</u> CRN, using *DNA strand displacement*

"Not every crazy CRN you scribble on paper describes actual chemicals!"

Response to objection: Soloveichik et al. [*PNAS* 2010] showed a physical implementation of <u>every</u> CRN, using *DNA strand displacement*

$$X_1 + X_2 \to X_3$$

"Not every crazy CRN you scribble on paper describes actual chemicals!"

Response to objection: Soloveichik et al. [*PNAS* 2010] showed a physical implementation of <u>every</u> CRN, using *DNA strand displacement*

$$X_1 + X_2 \to X_3$$

"Not every crazy CRN you scribble on paper describes actual chemicals!"

Response to objection: Soloveichik et al. [*PNAS* 2010] showed a physical implementation of <u>every</u> CRN, using *DNA strand displacement*

"Not every crazy CRN you scribble on paper describes actual chemicals!"

Response to objection: Soloveichik et al. [*PNAS* 2010] showed a physical implementation of <u>every</u> CRN, using *DNA strand displacement*

versus

versus

speed?

versus

slower

speed?

slower

versus

slower

versus

component size?

slower

≈ 10-100 nm

versus

component size?

"smart drug" to detect microRNAs levels of cell and release appropriate drug in response

"chemical controller" to increase yield of metabolically produced biofuels/drugs/etc.

CRNs have a wide range of behaviors:

CRNs have a wide range of behaviors:

CRNs have a wide range of behaviors:

CRNs have a wide range of behaviors:

CRNs have a wide range of behaviors:

CRNs have a wide range of behaviors:

• **species**: {*X*, *Y*, …}

• **species**: {*X*, *Y*, …}

reactions:

 $X \xrightarrow{k_1} W + 2Y + Z$ $A + B \xrightarrow{k_2} X$

- species: {X, Y, ...}
 state: integer vector of *counts* s = (#X, #Y, ...)
- reactions:

 $X \xrightarrow{k_1} W + 2Y + Z$ $A + B \xrightarrow{k_2} X$

- species: {X, Y, ...}
 state: integer vector of *counts* s = (#X, #Y, ...)
- reactions:

 rate of reaction:
 - $X \xrightarrow{k_1} W + 2Y + Z \qquad k_1 \cdot \# X$

$$B \xrightarrow{k_2} X$$

A +

 $k_2 \bullet \#A \bullet \#B / \text{volume}$

- species: {X, Y, ...}
 state: integer vector of *counts* s = (#X, #Y, ...)
- reactions:

 rate of reaction:
 - $\begin{array}{ccc} X \xrightarrow{k_1} W + 2Y + Z & k_1 \bullet \# X \\ \hline A + B \xrightarrow{k_2} X & k_2 \bullet \# A \bullet \# B / \text{ volume} \end{array}$

Prob[some reaction] = sum of all reaction rates

- species: {X, Y, ...}
 state: integer vector of *counts* s = (#X, #Y, ...)
- reactions:
 rate of reaction:
 - $\begin{array}{ccc} X \xrightarrow{k_1} W + 2Y + Z & k_1 \bullet \# X \\ \hline A + B \xrightarrow{k_2} X & k_2 \bullet \# A \bullet \# B / \text{ volume} \end{array}$

Prob[some reaction] = $\frac{\text{rate of that reaction}}{\text{sum of all reaction rates}}$ time until next reaction = exponential random variable

n finite-state agents

n finite-state agents repeatedly pick pair to interact

n finite-state agents repeatedly pick pair to interact

$$\delta(q,r) = (s,t)$$

 $\delta(s,r) = (q,q)$

(Angluin, Aspnes, Diamadi, Fisher, Peralta, PODC 2004)

q

q

n finite-state agents repeatedly pick pair to interact

n finite-state agents repeatedly pick pair to interact

$$\delta(q,r) = (s,t) \qquad t \qquad r$$

$$\delta(s,r) = (q,q) \qquad q$$

n finite-state agents repeatedly pick pair to interact

n finite-state agents repeatedly pick pair to interact

n finite-state agents repeatedly pick pair to interact

n finite-state agents repeatedly pick pair to interact

"parallel time" = # of interactions / n

all reactions have 2 reactants and 2 products

- all reactions have 2 reactants and 2 products
- all rate constants are 1

- all reactions have 2 reactants and 2 products
- all rate constants are 1
- volume = number of molecules

 (constant over time because of first constraint)

- all reactions have 2 reactants and 2 products
- all rate constants are 1
- volume = number of molecules (constant over time because of first constraint)
- order of reactants can matter (there's a "sender" and a "receiver" molecule)

- all reactions have 2 reactants and 2 products
- all rate constants are 1
- volume = number of molecules (constant over time because of first constraint)
- order of reactants can matter (there's a "sender" and a "receiver" molecule)
- sender/receiver states uniquely determine products (e.g., cannot have A+B → C+D and A+B → X+Y)

Computation with CRNs: Outline

- Stable computation ("deterministic")
- Randomized computation:
 - probability of error = small
 - probability of error = 0

Stable (deterministic) CRN computation

task: compute predicate $p(x_1,...,x_k)$, $x_1,...,x_k \in \mathbb{N}$

task: compute predicate $p(x_1,...,x_k)$, $x_1,...,x_k \in \mathbb{N}$

votes: two disjoint subsets of species: "yes" and "no" voters

task: compute predicate $p(x_1,...,x_k)$, $x_1,...,x_k \in \mathbb{N}$

votes: two disjoint subsets of species: "yes" and "no" voters

output $\varphi(s)$ of state s: the consensus vote (if voters unanimous)

task: compute predicate $p(x_1,...,x_k)$, $x_1,...,x_k \in \mathbb{N}$

votes: two disjoint subsets of species: "yes" and "no" voters **output** $\varphi(s)$ **of state s**: the consensus vote (if voters unanimous) **initial state**: $\#X_1 = x_1, ..., \#X_k = x_k$, constant counts of other species

task: compute predicate $p(x_1,...,x_k)$, $x_1,...,x_k \in \mathbb{N}$

votes: two disjoint subsets of species: "yes" and "no" voters **output** $\varphi(s)$ **of state s**: the consensus vote (if voters unanimous) **initial state**: $\#X_1 = x_1, \dots, \#X_k = x_k$, constant counts of other species **output-stable state**: all states reachable from it have same output

task: compute predicate $p(x_1,...,x_k)$, $x_1,...,x_k \in \mathbb{N}$ **votes**: two disjoint subsets of species: "yes" and "no" voters **output** $\varphi(\mathbf{s})$ of state s: the consensus vote (if voters unanimous) **initial state**: $\#X_1 = x_1,...,\#X_k = x_k$, constant counts of other species **output-stable state**: all states reachable from it have same output **stable computation**: for all states **s** reachable from the initial state **x**, a correct output-stable state **o** is reachable from **s**

task: compute predicate $p(x_1,...,x_k)$, $x_1,...,x_k \in \mathbb{N}$ **votes**: two disjoint subsets of species: "yes" and "no" voters **output** $\varphi(\mathbf{s})$ of state s: the consensus vote (if voters unanimous) **initial state**: $\#X_1 = x_1,...,\#X_k = x_k$, constant counts of other species **output-stable state**: all states reachable from it have same output **stable computation**: for all states **s** reachable from the initial state **x**, a correct output-stable state **o** is reachable from **s**

task: compute predicate $p(x_1,...,x_k)$, $x_1,...,x_k \in \mathbb{N}$ **votes**: two disjoint subsets of species: "yes" and "no" voters

output $\varphi(s)$ of state s: the consensus vote (if voters unanimous) initial state: $\#X_1 = x_1, \dots, \#X_k = x_k$, constant counts of other species output-stable state: all states reachable from it have same output

stable computation: for all states **s** reachable from the initial state **x**, a correct output-stable state **o** is reachable from **s**

67

task: compute predicate $p(x_1,...,x_k)$, $x_1,...,x_k \in \mathbb{N}$ **votes**: two disjoint subsets of species: "yes" and "no" voters

output $\varphi(s)$ of state s: the consensus vote (if voters unanimous) initial state: $\#X_1 = x_1, \dots, \#X_k = x_k$, constant counts of other species

output-stable state: all states reachable from it have same output

stable computation: for all states **s** reachable from the initial state **x**, a correct output-stable state **o** is reachable from **s**

task: compute predicate $p(x_1,...,x_k)$, $x_1,...,x_k \in \mathbb{N}$ **votes**: two disjoint subsets of species: "yes" and "no" voters

output $\varphi(s)$ of state s: the consensus vote (if voters unanimous) initial state: $\#X_1 = x_1, \dots, \#X_k = x_k$, constant counts of other species output-stable state: all states reachable from it have same output

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

69

task: compute predicate $p(x_1,...,x_k)$, $x_1,...,x_k \in \mathbb{N}$ **votes**: two disjoint subsets of species: "yes" and "no" voters

output $\varphi(s)$ of state s: the consensus vote (if voters unanimous) initial state: $\#X_1 = x_1, \dots, \#X_k = x_k$, constant counts of other species output-stable state: all states reachable from it have same output

stable computation: for all states **s** reachable from the initial state **x**, a correct output-stable state **o** is reachable from **s**

70

task: compute predicate $p(x_1, ..., x_k)$, $x_1, ..., x_k \in \mathbb{N}$

votes: two disjoint subsets of species: "yes" and "no" voters **output** $\varphi(\mathbf{s})$ **of state s**: the consensus vote (if voters unanimous) **initial state**: $\#X_1 = x_1, \dots, \#X_k = x_k$, constant counts of other species **output-stable state**: all states reachable from it have same output

71

stable computation: for all states s reachable from the initial
state x, a correct output-stable state o is reachable from s

task: compute predicate $p(x_1,...,x_k)$, $x_1,...,x_k \in \mathbb{N}$

votes: two disjoint subsets of species: "yes" and "no" voters **output** $\varphi(\mathbf{s})$ **of state s**: the consensus vote (if voters unanimous) **initial state**: $\#X_1 = x_1, \dots, \#X_k = x_k$, constant counts of other species **output-stable state**: all states reachable from it have same output

stable computation: for all states s reachable from the initial state x, a correct output-stable state o is reachable from s

72
execution: infinite sequence of states $\mathbf{s}_1, \mathbf{s}_2, ...,$ where \mathbf{s}_{i+1} is \mathbf{s}_i after applying a reaction (allow "null" reaction for convenience)

execution: infinite sequence of states $\mathbf{s}_1, \mathbf{s}_2, \dots$, where \mathbf{s}_{i+1} is \mathbf{s}_i after applying a reaction (allow "null" reaction for convenience)

fair execution: every state always reachable is infinitely often reached

execution: infinite sequence of states $\mathbf{s}_1, \mathbf{s}_2, ...,$ where \mathbf{s}_{i+1} is \mathbf{s}_i after applying a reaction (allow "null" reaction for convenience)

fair execution: every state always reachable is infinitely often reached

stable computation: predicate $p(x_1,...,x_k)$ is stably computed if every fair execution contains an output stable state **o** with $\varphi(\mathbf{o}) = p(x_1,...,x_k)$

predicate: p(x): parity of x

predicate: *p*(*x*): parity of *x*

initial state: { x X , 1 N }

predicate: p(x): parity of x

initial state: { *x X* , 1 *N* }

predicate: p(x): parity of x

initial state: { *x X* , 1 *N* }

predicate: p(x): parity of x

initial state: { *x X* , 1 *N* }

predicate: p(x): parity of x

initial state: { *x X* , 1 *N* }

predicate: $p(x_1, x_2)$: " $x_1 > x_2$ "?

predicate: $p(x_1, x_2)$: " $x_1 > x_2$ "?

initial state: $\{x_1 X_1, x_2 X_2, 1 N\}$

 (X_2)

 \mathbf{X}_{2}

predicate: $p(x_1, x_2)$: " $x_1 > x_2$ "?

initial state: $\{x_1 X_1, x_2 X_2, 1 N\}$

reactions: $N + X_1 \rightarrow Y$ $Y + X_2 \rightarrow N$

 (X_2)

 \mathbf{X}_{2}

predicate: $p(x_1, x_2)$: " $x_1 > x_2$ "?

initial state: $\{x_1 X_1, x_2 X_2, 1 N\}$

reactions: $N + X_1 \rightarrow Y$ $Y + X_2 \rightarrow N$ (X_2)

 (X_2)

 (X_2)

 (X_2)

Ŷ

 (X_1)

predicate: $p(x_1, x_2)$: " $x_1 > x_2$ "?

initial state: $\{ x_1 X_1, x_2 X_2, 1 N \}$

reactions: $N + X_1 \rightarrow Y$ $Y + X_2 \rightarrow N$ (X_2)

 (X_2)

 (X_2)

 (X_1)

(N)

predicate: $p(x_1, x_2)$: " $x_1 > x_2$ "?

initial state: $\{ X_1 X_1, X_2 X_2, 1 N \}$

reactions: $N + X_1 \rightarrow Y$ $Y + X_2 \rightarrow N$ (X_2)

 (X_2)

 (X_2)

 (\mathbf{Y})

predicate: $p(x_1, x_2)$: " $x_1 > x_2$ "?

initial state: $\{ X_1 X_1, X_2 X_2, 1 N \}$

reactions: $N + X_1 \rightarrow Y$ $Y + X_2 \rightarrow N$ (X_2)

 X_2

(N)

predicate: $p(x_1, x_2)$: " $x_1 = x_2$ "?

initial state: $\{x_1 X_1, x_2 X_2, 1 Y\}$

predicate: $p(x_1, x_2)$: " $x_1 = x_2$ "?

initial state: $\{x_1 X_1, x_2 X_2, 1 Y\}$

reactions: $X_1 + X_2 \rightarrow Y$ $Y + N \rightarrow Y$ $X_1 + Y \rightarrow X_1 + N$ $X_2 + Y \rightarrow X_2 + N$

function: f(x) = 2x

function: f(x) = 2x

 (\mathbf{X})

 (\mathbf{X})

 (\mathbf{X})

function: f(x) = 2x

reactions: $X \rightarrow 2Y$

94

 (\mathbf{X})

function: f(x) = 2x

reactions: $X \rightarrow 2Y$

 (\mathbf{Y})

 \mathbf{X}

 (\mathbf{Y})

function: f(x) = 2x

reactions: $X \rightarrow 2Y$

Y

Y

X

Ý

 (\mathbf{Y})

function: f(x) = 2x

reactions: $X \rightarrow 2Y$

Y

Y

Ŷ

 (\mathbf{Y})

Y

function: f(x) = x/2

function: f(x) = x/2

 (\mathbf{X})

function: f(x) = x/2

reactions: $2X \rightarrow Y$

X

X

 (X)

 (\mathbf{X})

(X)

function: f(x) = x/2

function: f(x) = x/2

reactions: $2X \rightarrow Y$

 (\mathbf{Y})

function: f(x) = x/2

reactions: $2X \rightarrow Y$

 (\mathbf{Y})

 (\mathbf{Y})

function: $f(x_1, x_2) = x_1 + x_2$

function: $f(x_1, x_2) = x_1 + x_2$

reactions: $X_1 \rightarrow Y$ $X_2 \rightarrow Y$

function: $f(x_1, x_2) = x_1 - x_2$

106

function: $f(x_1, x_2) = x_1 - x_2$

reactions: $X_1 \rightarrow Y$ $X_2 + Y \rightarrow$

function: $f(x_1, x_2) = \min\{x_1, x_2\}$
function: $f(x_1, x_2) = \min\{x_1, x_2\}$

reactions: $X_1 + X_2 \rightarrow Y$

function: $f(x_1, x_2) = \max\{x_1, x_2\}$

function: $f(x_1, x_2) = \max\{x_1, x_2\} = x_1 + x_2 - \min\{x_1, x_2\}$

function: $f(x_1, x_2) = \max\{x_1, x_2\} = |x_1 + x_2| - \min\{x_1, x_2\}$

reactions: X_1

$$\begin{array}{c} X_1 \rightarrow Y + X_1' \\ X_2 \rightarrow Y + X_2' \end{array}$$

function: $f(x_1, x_2) = \max\{x_1, x_2\} = x_1 + x_2 - \min\{x_1, x_2\}$

reactions: $X_1 \rightarrow Y + X_1'$ $X_2 \rightarrow Y + X_2'$ $X_1' + X_2' \rightarrow K$

function: $f(x_1, x_2) = \max\{x_1, x_2\} = x_1 + x_2 - \min\{x_1, x_2\}$

reactions: $X_1 \rightarrow Y + X_1'$ $X_2 \rightarrow Y + X_2'$ $X_1' + X_2' \rightarrow K$ $K + Y \rightarrow$

Stable CRN predicate computation (example)

predicate: $p(x_1, x_2)$: " $3x_1 > x_2/2$ "?

initial state: $\{x_1 X_1, x_2 X_2, 1 N\}$

Stable CRN predicate computation (example)

predicate: $p(x_1, x_2)$: " $3x_1 > x_2/2$ "?

initial state: $\{x_1 X_1, x_2 X_2, 1 N\}$

reactions: $X_1 \rightarrow 3Z_1$ $2X_2 \rightarrow Z_2$

Stable CRN predicate computation (example)

predicate: $p(x_1, x_2)$: " $3x_1 > x_2/2$ "?

initial state: $\{x_1 X_1, x_2 X_2, 1 N\}$

reactions: $X_1 \rightarrow 3Z_1$ $2X_2 \rightarrow Z_2$ $N + Z_1 \rightarrow Y$ $Y + Z_2 \rightarrow N$

Theorem: A predicate is stably computed by a CRN if and only if it is *semilinear*.

(Angluin, Aspnes, Diamadi, Fisher, Peralta, <u>PODC</u> 2004) (Angluin, Aspnes, Eisenstat, <u>PODC</u> 2006)

Theorem: A predicate is stably computed by a CRN if and only if it is *semilinear*.

"semilinear" = Boolean combination of *threshold* and *mod* tests

(Angluin, Aspnes, Diamadi, Fisher, Peralta, <u>PODC</u> 2004) (Angluin, Aspnes, Eisenstat, <u>PODC</u> 2006)

Theorem: A predicate is stably computed by a CRN if and only if it is *semilinear*.

"semilinear" = Boolean combination of *threshold* and *mod* tests

(Angluin, Aspnes, Diamadi, Fisher, Peralta, <u>PODC</u> 2004) (Angluin, Aspnes, Eisenstat, <u>PODC</u> 2006)

 $x_1 - 3x_2 < -7$

Theorem: A predicate is stably computed by a CRN if and only if it is *semilinear*.

(Angluin, Aspnes, Diamadi, Fisher, Peralta, <u>PODC</u> 2004) (Angluin, Aspnes, Eisenstat, <u>PODC</u> 2006)

Theorem: A predicate is stably computed by a CRN if and only if it is *semilinear*.

(Angluin, Aspnes, Diamadi, Fisher, Peralta, <u>PODC</u> 2004)
(Angluin, Aspnes, Eisenstat, <u>PODC</u> 2006)
(Chen, Doty, Soloveichik, <u>DNA</u> 2012, for function computation)

123

Each CRN has a set of *p* vectors {**u**₁,...,**u**_p} such that
 o is output stable if and only if no **u**_i ≤ **o**

- Each CRN has a set of *p* vectors {**u**₁,...,**u**_p} such that
 o is output stable if and only if no **u**_i ≤ **o**
- [Brijder, <u>DNA</u> 2014]: An algorithm can compute {u₁,...,u_p} in time O(p log^{s-0.5}(p) r s² log(u)) for population protocols

u = max_i |**u**_i| s = # species r = # reactions

- Each CRN has a set of *p* vectors {**u**₁,...,**u**_p} such that
 o is output stable if and only if no **u**_i ≤ **o**
- [Brijder, <u>DNA</u> 2014]: An algorithm can compute {u₁,...,u_p} in time O(p log^{s-0.5}(p) r s² log(u)) for population protocols

 $u = \max_i |\mathbf{u}_i|$ s = # species r = # reactions

Open question: how big can p and u get?

- Each CRN has a set of *p* vectors {**u**₁,...,**u**_p} such that
 o is output stable if and only if no **u**_i ≤ **o**
- [Brijder, <u>DNA</u> 2014]: An algorithm can compute {u₁,...,u_p} in time O(p log^{s-0.5}(p) r s² log(u)) for population protocols

 $u = \max_i |\mathbf{u}_i|$ s = # species r = # reactions

- Open question: how big can *p* and *u* get?
- Open question: extension to general CRNs?

n = # molecules in initial state

n = # molecules in initial state

O(n) if initial state contains only input molecules (Angluin, Aspnes, Eisenstat, <u>PODC</u> 2006, for predicates) (Doty, Hajiaghayi, <u>DNA</u> 2013, for functions)

n = # molecules in initial state

O(n) if initial state contains only input molecules (Angluin, Aspnes, Eisenstat, <u>PODC</u> 2006, for predicates) (Doty, Hajiaghayi, <u>DNA</u> 2013, for functions)

O(polylog(*n*)) otherwise (if the CRN can start with a leader) (Angluin, Aspnes, Eisenstat, <u>DISC</u> 2006, for predicates) (Chen, Doty, Soloveichik, <u>DNA</u> 2012, for functions)

n = # molecules in initial state

O(n) if initial state contains only input molecules (Angluin, Aspnes, Eisenstat, <u>PODC</u> 2006, for predicates) (Doty, Hajiaghayi, <u>DNA</u> 2013, for functions)

O(polylog(*n*)) otherwise (if the CRN can start with a leader) (Angluin, Aspnes, Eisenstat, <u>DISC</u> 2006, for predicates) (Chen, Doty, Soloveichik, <u>DNA</u> 2012, for functions)

polylogarithmic time = "fast" = polynomial in binary expansion of nlinear time = "slow" = exponential in binary expansion of n

Time complexity in CRNs

time until next reaction = exponential r.v.

 $\frac{\text{reaction}}{X \to W + 2Y + Z}$ $A + B \to X$

expected time 1 / #X volume / (#A•#B)

 $\begin{cases} n X \\ X \rightarrow Y + Y \end{cases}$

 $\begin{cases} n X \\ X \rightarrow Y + Y \end{cases}$

E[time to consume all X] =

 ${n X} \\ X \to Y + Y$

E[time to consume all X] = E[time to consume first X] + E[time to consume second X] + E[time to consume third X]

+ ...

+ E[time to consume final X]

 ${n X} \\ X \to Y + Y$

E[time to consume all X] = E[time to consume first X] + E[time to consume second X] + E[time to consume third X] + ... + E[time to consume final X] = 1/n + 1/(n-1) + 1/(n-2) + ... + 1/1 $\approx \log n$

{*n X*}, volume *n* $X + X \rightarrow Y$

E[time to consume all X] =

 $\{n X\}$, volume n $X + X \rightarrow Y$

E[time to consume all X] = $n/n^2 + n/(n-2)^2 + n/(n-4)^2 + ... + n$ < $n(1/2^2 + 1/4^2 + 1/6^2 + 1/8^2 + ...)$ = O(n)

 $\{n X\}$, volume n $X + X \rightarrow Y$

E[time to consume all X] = $n/n^2 + n/(n-2)^2 + n/(n-4)^2 + ... + n$ < $n(1/2^2 + 1/4^2 + 1/6^2 + 1/8^2 + ...)$ = O(n)

 $\{n X\}$, volume n $X + X \rightarrow Y$

E[time to consume all X] = $n/n^2 + n/(n-2)^2 + n/(n-4)^2 + ... + n$ < $n(1/2^2 + 1/4^2 + 1/6^2 + 1/8^2 + ...)$ = O(n)

Time complexity (leader election)

 $\{n L\}$, volume n $L + L \rightarrow L$

Time complexity (leader election) $\{n L\}, \text{ volume } n$ $L + L \rightarrow L$ E[time get to 1 L] = O(n)

Time complexity (leader election) $\{n L\}$, volume n $L + L \rightarrow L$ $L + L \rightarrow L$

Is there a faster CRN?

Time complexity (leader election) $\{n L\}$, volume n $L + L \rightarrow L$ E[time get to 1 L] = O(n)

Is there a faster CRN?

- If we really abuse the CRN model, yes (use $2X \rightarrow 3X$)
- In mass-conserving CRNs, we don't know
 - Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that seems to work in simulation
 - If we require 0 probability of error, no (unpublished)
Time complexity (leader election) $\{n L\}$, volume n $L + L \rightarrow L$ E[time get to 1 L] = O(n)

Is there a faster CRN?

- If we really abuse the CRN model, yes (use $2X \rightarrow 3X$)
- In mass-conserving CRNs, we don't know
 - Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that seems to work in simulation
 - If we require 0 probability of error, no (unpublished)

Time complexity (leader election) $\{n L\}$, volume n $L + L \rightarrow L$ E[time get to 1 L] = O(n)

Is there a faster CRN?

- If we really abuse the CRN model, yes (use $2X \rightarrow 3X$)
- In mass-conserving CRNs, we don't know
 - Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that seems to work in simulation
 - If we require 0 probability of error, no (unpublished)

Time complexity (leader election) $\{n L\}$, volume n $L + L \rightarrow L$ E[time get to 1 L] = O(n)

Is there a faster CRN?

- If we really abuse the CRN model, yes (use $2X \rightarrow 3X$)
- In mass-conserving CRNs, we don't know
 - Angluin, Aspnes, Eisenstat [DISC 2006] have a PP that seems to work in simulation
 - If we require 0 probability of error, no (unpublished)

What if we allow a small probability of error? (Randomized CRN computation)

(Angluin, Aspnes, Eisenstat, <u>DISC</u> 2006) — "in a sense" (Soloveichik, Cook, Winfree, Bruck, <u>Natural Computing</u> 2008)

Informal: A CRN can simulate a Turing machine with polynomial slowdown and small chance of error.

(Angluin, Aspnes, Eisenstat, <u>DISC</u> 2006) "in a sense" (Soloveichik, Cook, Winfree, Bruck, <u>Natural Computing</u> 2008)

Informal: A CRN can simulate a Turing machine with polynomial slowdown and small chance of error.

Implication: CRN simulation algorithms are the fastest way to predict their behavior.

(Angluin, Aspnes, Eisenstat, <u>DISC</u> 2006) — "in a sense" (Soloveichik, Cook, Winfree, Bruck, <u>Natural Computing</u> 2008)

Informal: A CRN can simulate a Turing machine with polynomial slowdown and small chance of error.

Implication: CRN simulation algorithms are the fastest way to predict their behavior.

Formal: For each TM *M*, there is a CRN *C* so that, for each $\varepsilon > 0$ and natural number *n*, there is an initial state **x** of *C* so that *C* simulates *M*(*n*) with probability ε of error, and expected time poly(*s*•*t*), where t and s are the time and space usage of *M*(*n*).

(Angluin, Aspnes, Eisenstat, <u>DISC</u> 2006) — "in a sense" (Soloveichik, Cook, Winfree, Bruck, <u>Natural Computing</u> 2008)

1) dec(r)
2) inc(s)
3) inc(s)
4) inc(s)
5) dec(t)
6) inc(s)

1) dec(r)
2) inc(s)
3) inc(s)
4) inc(s)
5) dec(t)
6) inc(s)

1) dec(r)
2) inc(s)
3) inc(s)
4) inc(s)
5) dec(t)
6) inc(s)

1) dec(r)
2) inc(s)
3) inc(s)
4) inc(s)
5) dec(t)
6) inc(s)

1) dec(r)
2) inc(s)
3) inc(s)
4) inc(s)
5) dec(t)
6) inc(s)

1) dec(r)
2) inc(s)
3) inc(s)
4) inc(s)
5) dec(t)
6) inc(s)

1) dec(r)
2) inc(s)
3) inc(s)
4) inc(s)
5) dec(t)
6) inc(s)

1) dec(r)
2) inc(s)
3) inc(s)
4) inc(s)
5) dec(t)
6) inc(s)

1) dec(r)
2) inc(s)
3) inc(s)
4) inc(s)
5) dec(t)
6) inc(s)

1) dec(r)
2) inc(s)
3) inc(s)
4) inc(s)
5) dec(t)

6) *inc*(s)

"input" counter 1) dec(r) if empty goto 6 2) inc(s) 3) inc(s) 4) inc(s) 5) dec(t) if empty goto 1 6) inc(s)

- 1) dec(r) if empty goto 6
- 2) inc(s)
- 3) *inc*(s)
- 4) inc(s)
- 5) dec(t) if empty goto 16) *inc*(s)

- 1) dec(r) if empty goto 6
- 2) inc(s)
- 3) *inc*(s)
- **4)** *inc*(**s**)
- 5) dec(t) if empty goto 16) *inc*(s)

- 1) dec(r) if empty goto 6
- 2) inc(s)
- 3) *inc*(s)
- **4)** *inc*(**s**)
- 5) dec(t) if empty goto 1
- 6) *inc*(s)

HALT

- 1) dec(r) if empty goto 6
- 2) inc(s)
- 3) *inc*(s)
- **4)** *inc*(**s**)
- 5) dec(t) if empty goto 1
- 6) *inc*(s)

"input" counter r , s t • • • •

computes f(n) = 3n+1

HALT
CRNs can simulate counter machines with probability < 1

CRNs can simulate counter machines with probability < 1

Counter machine:

r = input n, start line 1

- 1) *inc*(r)
- 2) dec(r) if zero goto 1
- 3) *inc*(s)
- 4) dec(s) if zero goto 2

CRNs can simulate counter machines with probability < 1**Counter machine: CRN**: r = input n, start line 1 initial state {n R, 1 L_1 } 1) inc(r)2) dec(r) if zero goto 1 3) *inc*(s) 4) dec(s) if zero goto 2

CRNs can simulate counter machines with probability < 1

CRN:

Counter machine:

r = input *n*, start line 1

- 1) *inc*(r)
- 2) dec(r) if zero goto 1
- 3) *inc*(s)

4) dec(s) if zero goto 2

initial state {n R, 1 L_1 } $L_1 \rightarrow L_2 + R$

CRNs can simulate counter machines with probability < 1**Counter machine: CRN**: r = input *n*, start line 1 initial state {n R, 1 L_1 } $L_1 \rightarrow L_2 + R$ 1) inc(r) $L_2 + R \rightarrow L_3$ 2) dec(r) if zero goto 1 3) *inc*(s) 4) dec(s) if zero goto 2

CRNs can simulate counter machines with probability < 1**Counter machine: CRN**: r = input *n*, start line 1 initial state {n R, 1 L_1 } $L_1 \rightarrow L_2 + R$ 1) inc(r)2) *dec*(r) if zero goto 1 $L_2 + R \rightarrow L_3$ 3) *inc*(s) 4) dec(s) if zero goto 2

CRNs can simulate counter machines with probability < 1**Counter machine: CRN**: r = input *n*, start line 1 initial state {n R, 1 L_1 } $L_1 \rightarrow L_2 + R$ 1) inc(r)2) *dec*(r) if zero goto 1 $L_2 + R \rightarrow L_3$; $L_2 \rightarrow L_1$ 3) *inc*(s) 4) dec(s) if zero goto 2

CRNs can simulate counter machines with probability < 1**Counter machine: CRN**: r = input *n*, start line 1 initial state {n R, 1 L_1 } $L_1 \rightarrow L_2 + R$ 1) inc(r) $L_2 + R \rightarrow L_3$; $L_2 \rightarrow L_1$ 2) dec(r) if zero goto 1 $L_3 \rightarrow L_4 + S$ 3) inc(s) $L_4 + S \rightarrow L_5$; $L_4 \rightarrow L_2$ 4) dec(s) if zero goto 2

CRNs can simulate counter machines with probability < 1**Counter machine: CRN**: r = input *n*, start line 1 initial state {n R, 1 L_1 } $L_1 \rightarrow L_2 + R$ 1) *inc*(r) $L_2 + R \rightarrow L_3 \quad (; \quad L_2 \rightarrow L_1)$ 2) dec(r) if zero goto 1 $\begin{array}{c} L_3 \rightarrow L_4 + S \\ L_4 + S \rightarrow L_5 \end{array} \begin{array}{c} \text{Need to be} \\ \textbf{very slow!} \\ L_4 \rightarrow L_2 \end{array}$ 3) *inc*(s) 4) dec(s) if zero goto 2

How to slow down reaction $L_2 \rightarrow L_1$?

How to slow down reaction $L_2 \rightarrow L_1$? Use a clock: 1 C_1 , 1 F, n B

How to slow down reaction $L_2 \rightarrow L_1$? Use a clock: 1 *C*₁, 1 *F*, *n B* $F + C_1 \rightarrow F + C_2 \qquad B + C_2 \rightarrow B + C_1$ $F + C_2 \rightarrow F + C_3 \qquad B + C_3 \rightarrow B + C_2$

• Errr... isn't that stable computation?

- Errr... isn't that stable computation?
- With finite state space (e.g. population protocols), yes.

- Errr... isn't that stable computation?
- With finite state space (e.g. population protocols), yes.

Consider...

 $Y \xrightarrow{2} 2Y$ $Y \xrightarrow{1}$ $\xrightarrow{1}$ Y

- Errr... isn't that stable computation?
- With finite state space (e.g. population protocols), yes.

Consider...

$$\begin{array}{c} Y \xrightarrow{2} 2Y \\ Y \xrightarrow{1} \end{array}$$

initial state {1Y,1N}

- Errr... isn't that stable computation?
- With finite state space (e.g. population protocols), yes.

Consider...

$$\begin{array}{c} Y \xrightarrow{2} 2Y \\ Y \xrightarrow{1} \end{array}$$

initial state {1Y,1N}

Theorem: All (Turing) computable predicates can be computed by a CRN with probability 1.

(Cummings, Doty, Soloveichik, DNA 2014)

