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Roadmap

Concurrent data 
sketches:
1. Fast implementation

2. Correctness 
semantics
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Why New Semantics?

• Amenable to efficient implementation 
• Linearizability is often too costly

• Meaningful 
• Bound sketches’ estimation errors

• Leverage what we know about the sequential case
• Error analysis
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Motivation: Massive Real-Time Analytics
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Real-time reports
~830,000 mobile apps on 
~1.6 billion user devices
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OLAP - Online Analytical Processing Examples
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Motivation: Big Data Analytics & Monitoring

8

Real-Time Big 
Data Analytics

Idit Keidar, DISC October 2020



The Tool: Data Sketches
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Data Sketches: Lean & Mean Aggregation

• Statistical summary of large stream
• Estimates some aggregate

• #uniques 
• quantiles
• heavy-hitters
• item frequencies

• Fast
• Small memory footprint
• Widely-used

10Idit Keidar, DISC October 2020



Real-Time Analytics – Where We Fit In
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Content 
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Example: Estimating the Number of Uniques

• E.g., unique visitors to a web page
• How many uniques?
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Θ Sketch: Basic Idea

• Hash unique elements into [0,1] uniformly at random
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Θ Sketch: Basic Idea

• Hash unique elements into [0,1] uniformly at random

• How do we estimate how many there are?
• Without keeping all of them in memory?
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Θ Sketch: Basic Idea

• Hash unique elements into [0,1] uniformly at random
• For a threshold Θ, 0 < Θ ≤ 1
• Keep elements with hashes smaller than Θ

• In expectation, a Θ portion of the uniques in the stream
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KMV Θ Sketch 
[Bar-Yossef et al. 2002]

• Θ = 𝑘𝑘𝑡𝑡ℎ minimum hash value seen (initially Θ = 1)
• Estimate = 𝑘𝑘/Θ
• Example: k=4
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KMV Θ Sketch

• Θ = 𝑘𝑘𝑡𝑡ℎ minimum hash value seen (initially Θ = 1)
• Estimate = 𝑘𝑘/Θ
• Example: k=4
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Sketches Are Approximate

• Typically PAC (probably approximately correct)
• Error at most 𝜖𝜖 with probability at least 1 − 𝛿𝛿
• With appropriately chosen parameters
• Each sketch comes with its own analysis

• KMV provides an estimate 𝑒̂𝑒
• E[𝑒̂𝑒] = 𝑛𝑛, the number of uniques
• RSE[𝑒̂𝑒] = 1

𝑘𝑘−2
• RSE is the relative standard error = 𝜎𝜎

𝑛𝑛
[Bar-Yossef et al. 2002]
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Θ Sketches Are Fast

• On incoming id
h = hash(id)
if h < Θ

add h to sketch
if |sketch| > k, remove largest
Θ = largest hash in sketch
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No else!
Once Θ is small, usually 

does nothing more
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More Examples

• Event counters
• Quantiles – e.g., duration of 90th percentile of sessions
• Item frequency – CountMin
• Heavy hitters
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Hardware Trends

• Multi-core servers
• Performance via parallelism, not sequential speed

• Cheaper DRAM
• In-memory processing of bigger data
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Average selling price of 
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What and Why - Recap

• What?
• Concurrent data sketches, approximate counters

• Why?
• Online monitoring & analytics of big data streams

• Why concurrent?
• Today’s hardware: multi-core with larger RAM

• Challenges
• Efficient implementation
• Meaningful semantics – leveraging what we know about the 

sequential case
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Roadmap Recap

Concurrent data 
sketches:
1. Fast implementation

2. Correctness 
semantics
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Context: Open-Source DataSketches Library
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Today’s Sketches Aren’t Thread-Safe
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https://github.com/apache/incubator-datasketches-java/issues/178#issuecomment-
365673204
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Challenge 1: Sketches Aren’t Thread-Safe

Need protection:

try {
lock (sketch)
sketch.update(...);

} finally {
unlock (sketch)

}
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But locks are costly: 
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Challenge 2: Can’t Query While Updating

Current approach:
• Use locks 

or
• Update in epochs, query previous epoch
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Concurrent DataSketches
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Concurrent Sketches - Goals

• High throughput
• Concurrent updates
• Harness multi-cores for multi-threaded stream processing

• Query freshness
• Allow queries during updates

• Ease-of-use
• Library, not application, responsible for synchronization

• Enjoy sketch’s benefits
• Fast
• Bounded estimation error
• Small memory footprint
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Concurrent Sketches: Generic Architecture
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Sketchqueries
Your favorite 
sketch here
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Concurrent Sketches: Generic Architecture
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Global Sketch

buffer
(small sketch)

buffer
(small sketch). . . 

queries Your favorite 
sketch here

More about 
that later …
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Example
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buffer
(size=2)

buffer
(size=2). . . 

Idit Keidar, DISC October 2020

Θ Global Sketch



if (hash(arg)) > Θ
skip

…

What About Fastness?
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if (hash(arg)) > Θ
skip

…

Θ Global Sketch

buffer
(size=2)

buffer
(size=2). . . 
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very fast 
once Θ is 

small

But what is Θ
after buffer is 

emptied?



Optimizations

Problem: Missing critical information (e.g., Θ)
Solution: Piggyback sketch-specific information on existing 
generic synchronization

Problem: Thread is idle during propagation
Solution: Use double buffering
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Space and Error
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Global Sketch

b extra 
space

b elements missed by 
query (per buffer)

space & error 
bounds of 
sequential 
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Bounding the Error in Small Streams
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Global Sketch

buffer
(small sketch)

buffer
(small sketch). . . 

b elements missed by 
query (per buffer)

Out of how many ?

Use eager merge 
(no buffering) while 
stream < threshold
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Keys to Performance

• Minimize synchronization
• Few fences
• Synchronize only when buffer is filled/empty

• Locality
• Cache & NUMA friendly
• Threads work in (mostly) unshared memory

• But … share pertinent information
• E.g., up-to-date Θ for fast processing
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Update Throughput
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Same performance for 
all buffer sizes b.



Another Example: Quantiles Sketch
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Proof Overview

• We show that
• our generic algorithm
• instantiated with a composable sketch 
• satisfies strong linearizability [Golab et al. ]

• wrt an r-relaxation [Henzinger et al.] of
• the sequential specification derived from the sequential sketch
• for r = 2Nb; N = #threads, b = buffer size

We then analyze the error of the relaxed specification
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By strong linearizability, this is the error of our sketch!



Analyzed Error of Concurrent Θ sketch
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Empirical Evaluation of Relative Error
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Eager 
propagation 
ends here

Idit Keidar, DISC October 2020



Interim Summary: Fast Concurrent Sketches 

• Generic solution based on composable sketches
• Rigorous correctness proof using relaxed consistency

• High throughput via concurrent updates
• Query freshness

• Allow queries during updates

• Ease-of-use
• Library responsible for synchronization

• Enjoy sketches’ benefits
• Fast
• Bounded estimation error
• Small memory footprint
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Roadmap Recap

Concurrent data 
sketches:
1. Fast implementation

2. Correctness 
semantics
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Wait, didn’t you just 
say you proved 

correctness?

Something about 
r-relaxed strong 
linearizability?

Idit Keidar, DISC October 2020



Concurrency on the Global Sketch Revisited

• The global sketch is strongly linearizable
• The r-relaxation only arises due to buffering (local sketches)

• In general, this requires atomic snapshots
• In the Θ sketch, snapshots are cheap
• Alas, this is not always the case
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Global Sketch
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Example: CountMin Sketch
[Cormode and Muthukrishna, 2005]

• Estimates item frequency
𝑤𝑤

𝑑𝑑

ℎ1, … ,ℎ𝑑𝑑: Σ ↦ [𝑤𝑤]
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Example: CountMin Sketch
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CountMin Sequential Error Bounds

• Consider a query invoked after N updates
• Let 𝑓𝑓 𝑎𝑎 denote the frequency of a  in these updates
• query 𝑎𝑎 returns an estimate 𝑓𝑓 𝑎𝑎 of 𝑓𝑓(𝑎𝑎)
• For desired parameters 𝜖𝜖, 𝛿𝛿,

CountMin’s parameters w and d can be chosen so that 
𝑓𝑓 𝑎𝑎 ≤ 𝑓𝑓 𝑎𝑎 , and with probability at least 1 − 𝛿𝛿:

𝑓𝑓 𝑎𝑎 ≤ 𝑓𝑓 𝑎𝑎 + 𝜖𝜖𝜖𝜖

[Cormode and Muthukrishna, 2005]

57Idit Keidar, DISC October 2020



What About Concurrency?
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update update update

query(       )
read  ℎ1 read  ℎ2 read  ℎ3

• Can a query just read the counters?

read  ℎ4, ℎ5



What About Concurrency?
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update update update

query(       )
read  ℎ1 read  ℎ2 read  ℎ3

• Can a query just read the counters?

read  ℎ4, ℎ5

Might return 𝑓𝑓 𝑎𝑎 that does 
not occur in any linearization



What About Concurrency?
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update

query(       )
read  ℎ1 read  ℎ2 - ℎ5

• Can a query just read the counters?

inc ℎ1 inc  ℎ2

query(       )



Problem?

• We required the shared global sketch to be strongly 
linearizable

• This makes it indistinguishable from an atomic variable
• And so preserves the error bounds of the sequential sketch
• Note: this holds for any sequential sketch

• But … requires an atomic snapshot (costly)
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But … 
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update update update

query(a)

• What if a query just reads the counters?

If the query atomically happens here, it returns 𝑓𝑓𝑠𝑠 𝑎𝑎 so that
𝑓𝑓𝑠𝑠 𝑎𝑎 ≤ 𝑓𝑓𝑠𝑠 𝑎𝑎



But … 
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update update update

query(a)

• What if a query just reads the counters?

If the query atomically happens here, it returns 𝑓𝑓𝑒𝑒 𝑎𝑎 so that
𝑓𝑓𝑒𝑒 𝑎𝑎 ≤ 𝑓𝑓𝑒𝑒 𝑎𝑎 + 𝜖𝜖𝑁𝑁𝑒𝑒 with probability at least 1 − 𝛿𝛿



But … 
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update update update

query(a)

• What if a query just reads the counters?

All counters are monotonic, so the query returns 𝑓𝑓 𝑎𝑎
𝑓𝑓𝑠𝑠 𝑎𝑎 ≤ 𝑓𝑓 𝑎𝑎 ≤ 𝑓𝑓𝑒𝑒 𝑎𝑎



So …

• 𝑓𝑓𝑠𝑠 𝑎𝑎 ≤ 𝑓𝑓𝑠𝑠 𝑎𝑎
• 𝑓𝑓𝑒𝑒 𝑎𝑎 ≤ 𝑓𝑓𝑒𝑒 𝑎𝑎 + 𝜖𝜖𝑁𝑁𝑒𝑒 with prob ≥ 1 − 𝛿𝛿
• 𝑓𝑓𝑠𝑠 𝑎𝑎 ≤ 𝑓𝑓 𝑎𝑎 ≤ 𝑓𝑓𝑒𝑒 𝑎𝑎

• We get:  𝑓𝑓𝑠𝑠 𝑎𝑎 ≤ 𝑓𝑓 𝑎𝑎 ≤ 𝑓𝑓𝑒𝑒 𝑎𝑎 + 𝜖𝜖𝑁𝑁𝑒𝑒 with prob ≥ 1 − 𝛿𝛿
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The item’s frequency 
at the time when the 
query begins

The item’s frequency 
at the time when the 
query ends

The stream size at the 
time when the query 
ends

The error 
remains 
bounded 
without a 
snapshot
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OK, so a concurrent  
CountMin sketch does not 

need to be linearizable, 
but can you specify what it 

does need to ensure?

Better yet, can you specify 
a generic property that 

applies to many sketches?



Intermediate Value Linearizability (IVL)

• A correctness criterion for concurrent quantitative objects
• A query returns a value from a totally ordered domain
• E.g., sketches, counters

• Cheaper than linearizability
• Inherently in some cases (see Arik’s talk)

• Preserves the error bounds of the sequential object
• Enforces (non-relaxed) linearizability in sequential 

executions, allows more freedom in concurrent ones
• A local property (composable)
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IVL – Simple Example

• Every query’s return value is bounded between two legal 
values that can be returned in linearizations

68Idit Keidar, DISC October 2020

query

add(4) add(3)counter=17 counter=24

May return any value between 17 and 24



(𝜖𝜖, 𝛿𝛿)-Bounded Objects

• For an ideal value 𝑣𝑣, a query returns a value �𝑣𝑣 such that
with probability at least 1 − 𝛿𝛿/2:   �𝑣𝑣 ≥ 𝑣𝑣 − 𝜖𝜖
and
with probability at least 1 − 𝛿𝛿/2:   �𝑣𝑣 ≤ 𝑣𝑣 + 𝜖𝜖

• Many examples, including Θ, Quantiles, CountMin, …
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Our Main Theorem

An IVL implementation of a sequential (𝜖𝜖, 𝛿𝛿)-bounded 
object is a concurrent (𝜖𝜖, 𝛿𝛿)-bounded object.



To Conclude

• Big data analytics has big demands
• Memory is getting bigger – more data can be analyzed in memory
• CPUs are not getting faster – need to harness multi-cores

• Concurrent processing challenges:
• Efficiency – minimize synchronization, share pertinent information
• Correctness – analyze impact of concurrency on error

• Our contributions:
• Framework for fast concurrent sketches
• Correctness semantics with guaranteed error bounds
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Thank you!
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