Concurrent Big Data Processing Data Structures & Semantics

Idit Keidar

Idit Keidar, DISC October 2020

Shout Out

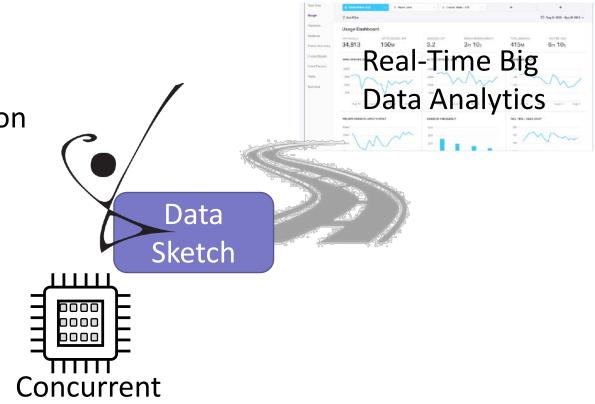
1. Fast Concurrent Data Sketches, PPoPP 2020 Arik Rinberg, Alexander Spiegelman, Edward Bortnikov, Eshcar Hillel, Idit Keidar, Lee Rhodes, Hadar Serviansky

 Intermediate Value Linearizability, DISC 2020 Arik Rinberg and Idit Keidar (Best Student Paper)

Roadmap

Concurrent data sketches:

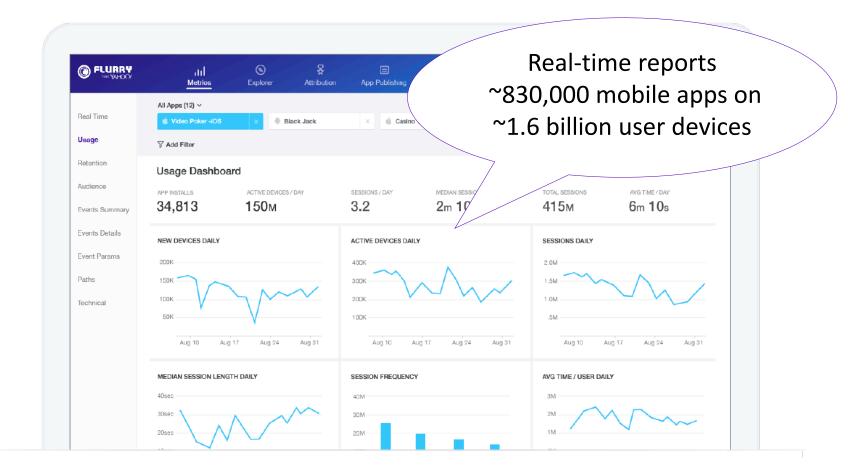
- 1. Fast implementation [™][™][™][™]
- 2. Correctness semantics



Why New Semantics?

- Amenable to efficient implementation
 - Linearizability is often too costly
- Meaningful
 - Bound sketches' estimation errors
- Leverage what we know about the sequential case
 - Error analysis

Motivation: Massive Real-Time Analytics



ed <mark>in</mark>

Join I

Fast First Analytics Will Simplify Your Life

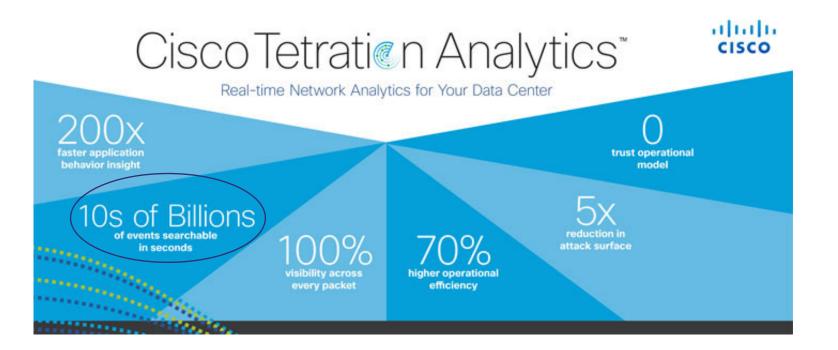
Published on February 3, 2017

Tripp Smith | Follow Chief Technology Officer at Clarity Solution Group

IDC estimates 82% of organizations are in some phase of adopting real-time analytics in the past year. [1] Low latency, "fast first" integration and analytics make managing big data easier ("low latency" and "fast first" here are used to avoid contention surrounding the semantic definition of commonly overused terms streaming or real-time). Capturing event data, generated in real time, in offline storage to process in batches at intervals, overnight, or at the end of the month was never easy. It was possibly a pattern born of

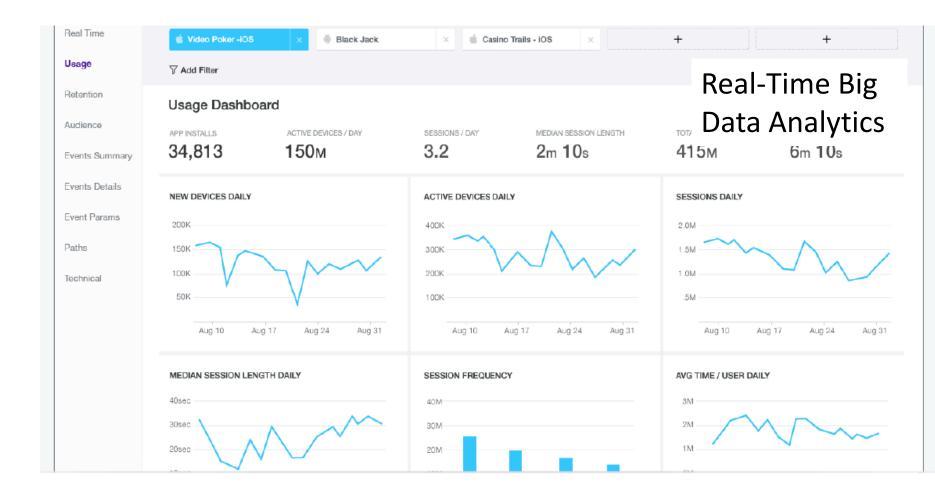
International Data Corporation Market research company

OLAP - Online Analytical Processing Examples



Idit Keidar, DISC October 2020

Motivation: Big Data Analytics & Monitoring

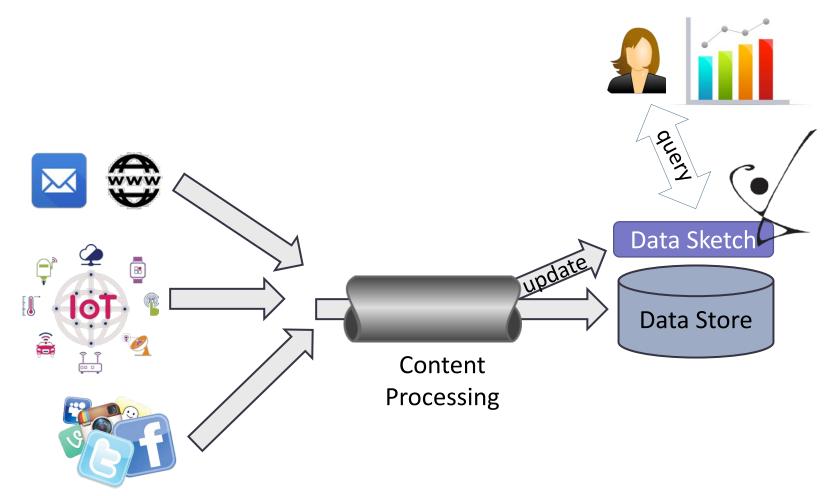


The Tool: Data Sketches

Data Sketches: Lean & Mean Aggregation

- Statistical summary of large stream
- Estimates some aggregate
 - #uniques
 - quantiles
 - heavy-hitters
 - item frequencies
- Fast
- Small memory footprint
- Widely-used

Real-Time Analytics – Where We Fit In



Example: Estimating the Number of Uniques

- E.g., unique visitors to a web page
- How many uniques?

Θ Sketch: Basic Idea

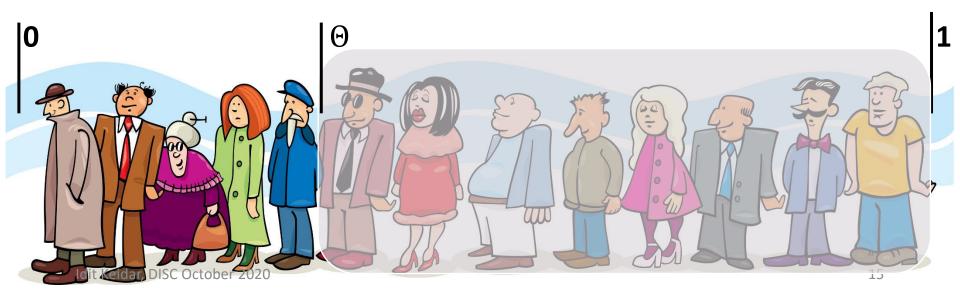
• Hash unique elements into [0,1] uniformly at random

Θ Sketch: Basic Idea

- Hash unique elements into [0,1] uniformly at random
- How do we estimate how many there are?
- Without keeping all of them in memory?

Θ Sketch: Basic Idea

- Hash unique elements into [0,1] uniformly at random
- For a threshold Θ , $0 < \Theta \leq 1$
- Keep elements with hashes smaller than Θ
 - In expectation, a Θ portion of the uniques in the stream



KMV Θ Sketch [Bar-Yossef et al. 2002]

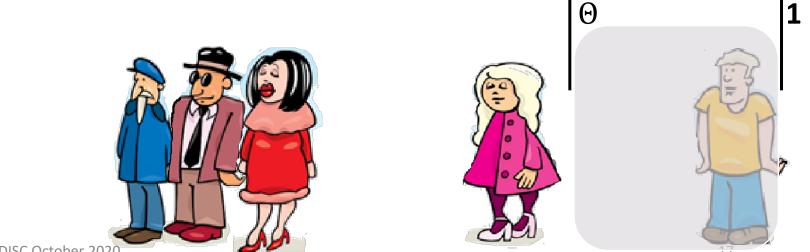
- $\Theta = k^{th}$ minimum hash value seen (initially $\Theta = 1$)
- Estimate = k/Θ
- Example: k=4

0

KMV O Sketch

- $\Theta = k^{th}$ minimum hash value seen (initially $\Theta = 1$)
- Estimate = k/Θ
- Example: k=4

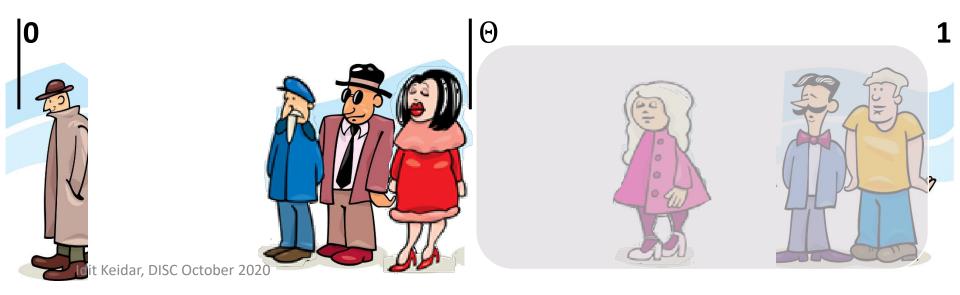
0



Idit Keidar, DISC October 2020

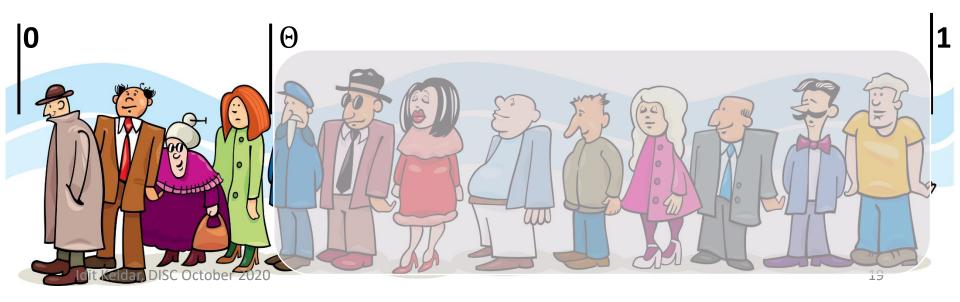
KMV O Sketch

- $\Theta = k^{th}$ minimum hash value seen (initially $\Theta = 1$)
- Estimate = k/Θ
- Example: k=4



KMV O Sketch

- $\Theta = k^{th}$ minimum hash value seen (initially $\Theta = 1$)
- Estimate = k/Θ
- Example: k=4

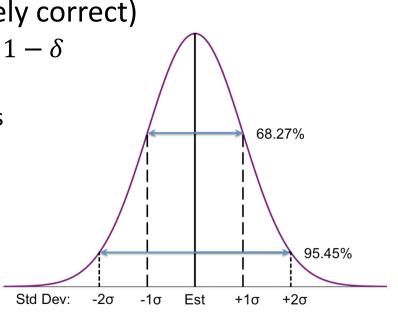


Sketches Are Approximate

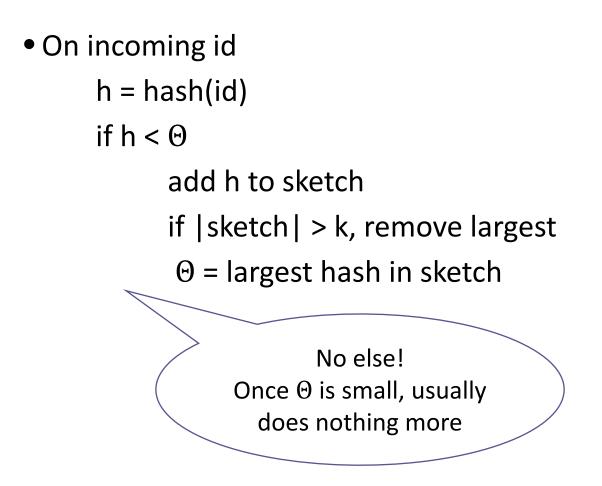
• Typically PAC (probably approximately correct)

- Error at most ϵ with probability at least $1-\delta$
- With appropriately chosen parameters
- Each sketch comes with its own analysis
- KMV provides an estimate \hat{e}
 - $E[\hat{e}] = n$, the number of uniques
 - RSE $[\hat{e}] = \frac{1}{\sqrt{k-2}}$
 - RSE is the relative standard error = $\frac{\sigma}{n}$

[Bar-Yossef et al. 2002]

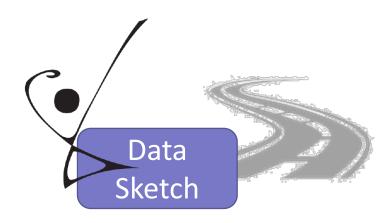


O Sketches Are Fast ⊡_____



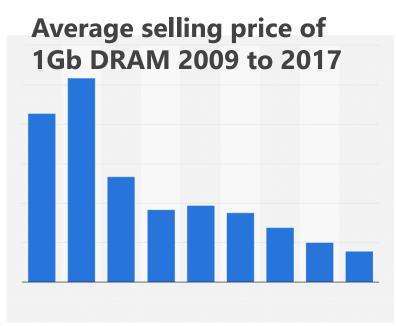
More Examples

- Event counters
- Quantiles e.g., duration of 90th percentile of sessions
- Item frequency CountMin
- Heavy hitters



Hardware Trends

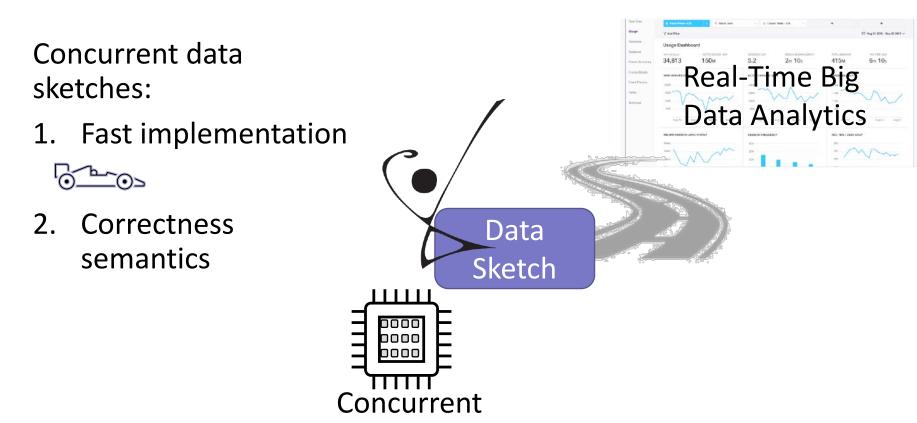
- Multi-core servers
 - Performance via parallelism, not sequential speed
- Cheaper DRAM
 - In-memory processing of bigger data



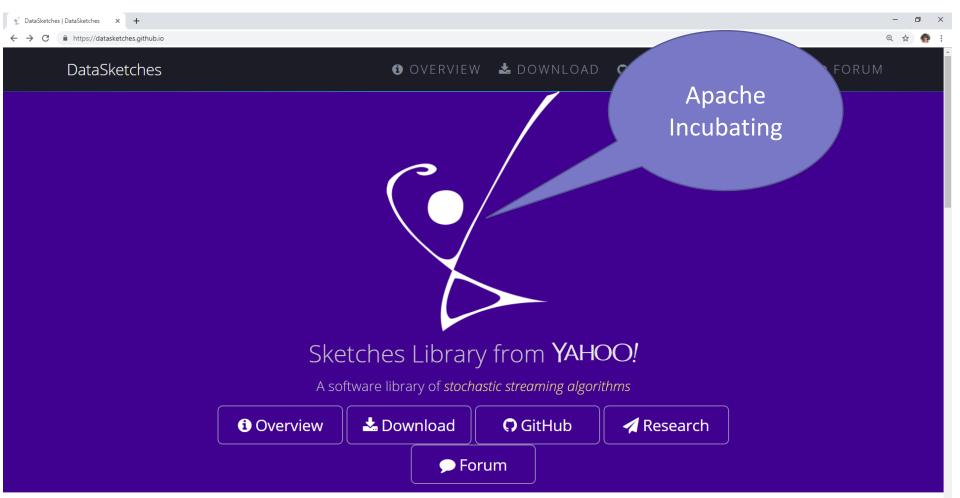
What and Why - Recap

- What?
 - Concurrent data sketches, approximate counters
- Why?
 - Online monitoring & analytics of big data streams
- Why concurrent?
 - Today's hardware: multi-core with larger RAM
- Challenges
 - Efficient implementation
 - Meaningful semantics leveraging what we know about the sequential case

Roadmap Recap



Context: Open-Source DataSketches Library



The Business Challenge: Analyzing Big Data Quickly. Idit Keidar, DISC October 2020

Today's Sketches Aren't Thread-Safe

sketches-user > SketchesArgumentException: Key not found and no empty slot in table 6 posts by 2 authors •

☆ Higuys,

I encounter this exception when update sketch. I have googled but found nothing. Anyone encountered the same issue? Please help me!

leerho commented on Jan 18, 2018

Contributor

None of the sketches in the library are multi-threaded. If you have concurrent threads reading and writing to the same sketch you must make your sketch wrapper synchronized.

https://github.com/apache/incubator-datasketches-java/issues/178#issuecomment-365673204

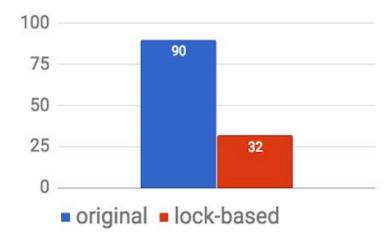
Idit Keidar, DISC October 2020

Challenge 1: Sketches Aren't Thread-Safe

million op/sec

But locks are costly:

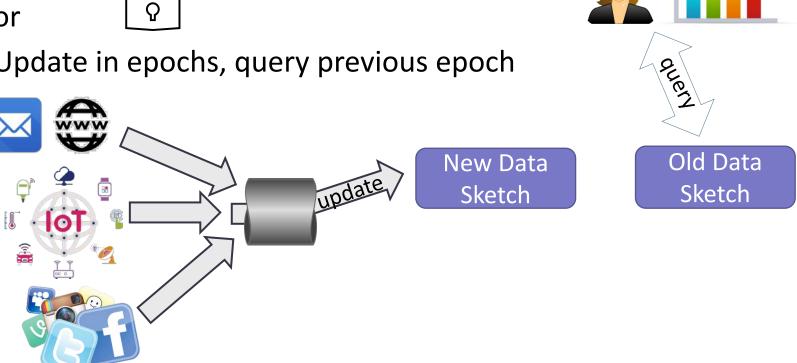
⊖ Sketch Single-ThreadInsertion Throughput



Challenge 2: Can't Query While Updating

Current approach:

- Use locks Q or
- Update in epochs, query previous epoch



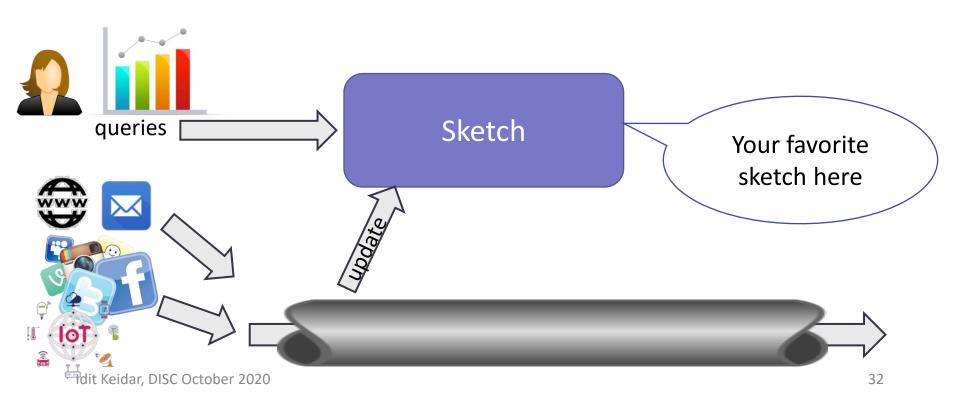
Concurrent DataSketches

Concurrent Sketches - Goals

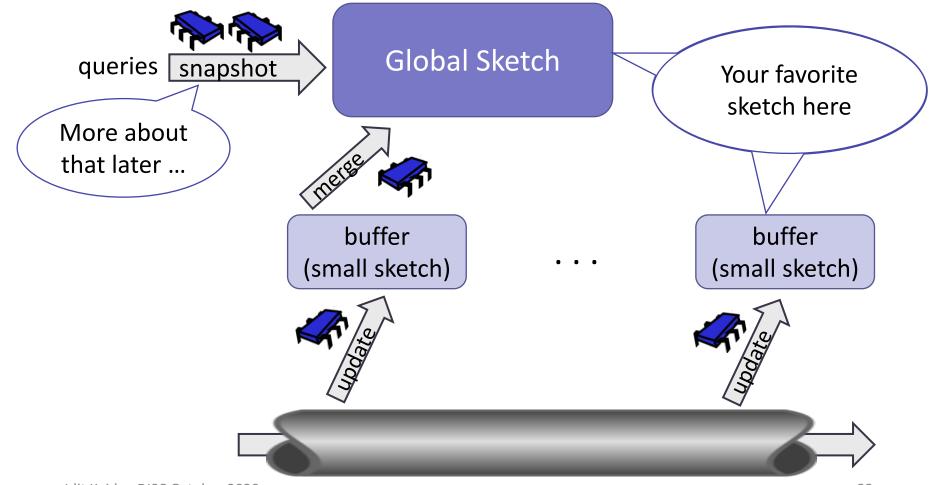
• High throughput

- Concurrent updates
- Harness multi-cores for multi-threaded stream processing
- Query freshness
 - Allow queries during updates
- Ease-of-use
 - Library, not application, responsible for synchronization
- Enjoy sketch's benefits
 - Fast
 - Bounded estimation error
 - Small memory footprint

Concurrent Sketches: Generic Architecture

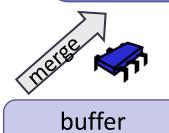


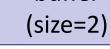
Concurrent Sketches: Generic Architecture



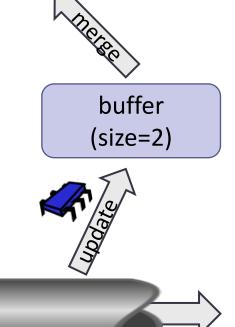
Idit Keidar, DISC October 2020

Example



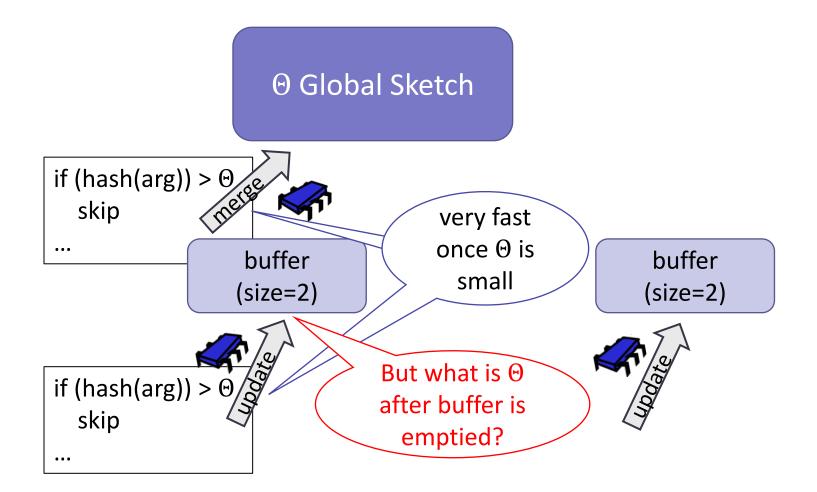


update



Idit Keidar, DISC October 2020

What About Fastness?

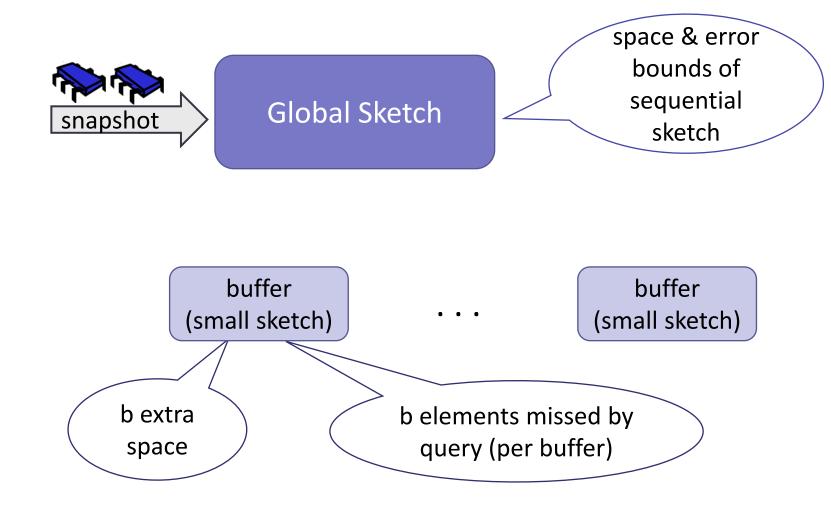


Optimizations

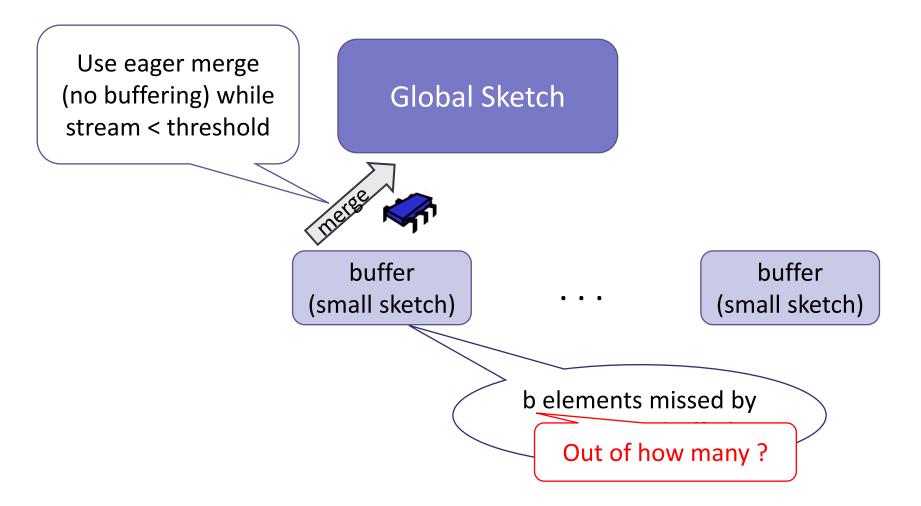
<u>Problem</u>: Missing critical information (e.g., Θ) <u>Solution</u>: Piggyback sketch-specific information on existing generic synchronization

<u>Problem</u>: Thread is idle during propagation <u>Solution</u>: Use double buffering

Space and Error



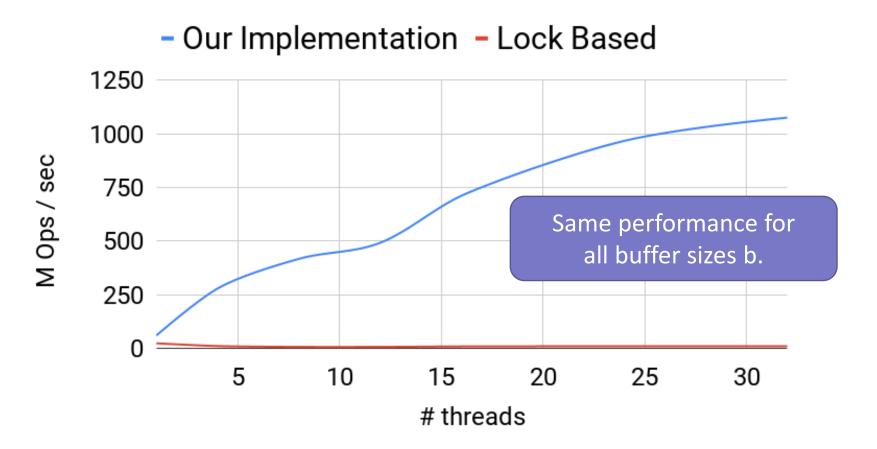
Bounding the Error in Small Streams



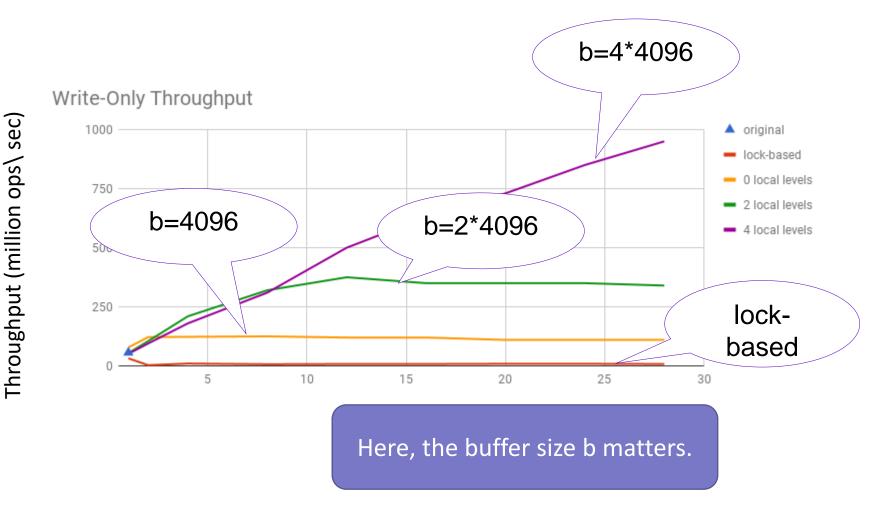
Keys to Performance

- Minimize synchronization
 - Few fences
 - Synchronize only when buffer is filled/empty
- Locality
 - Cache & NUMA friendly
 - Threads work in (mostly) unshared memory
- But ... share pertinent information
 - E.g., up-to-date Θ for fast processing

Update Throughput



Another Example: Quantiles Sketch



Proof Overview

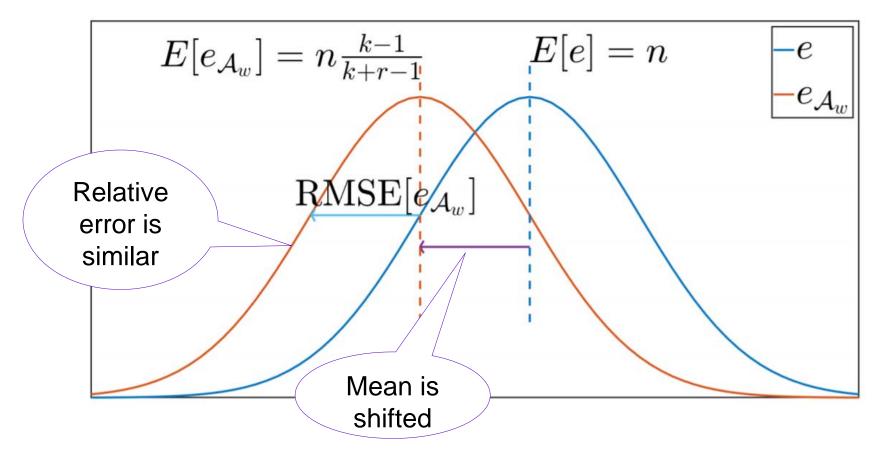
• We show that

- our generic algorithm
- instantiated with a composable sketch
- satisfies strong linearizability [Golab et al.]
- wrt an r-relaxation [Henzinger et al.] of
- the sequential specification derived from the sequential sketch
- for r = 2Nb; N = #threads, b = buffer size

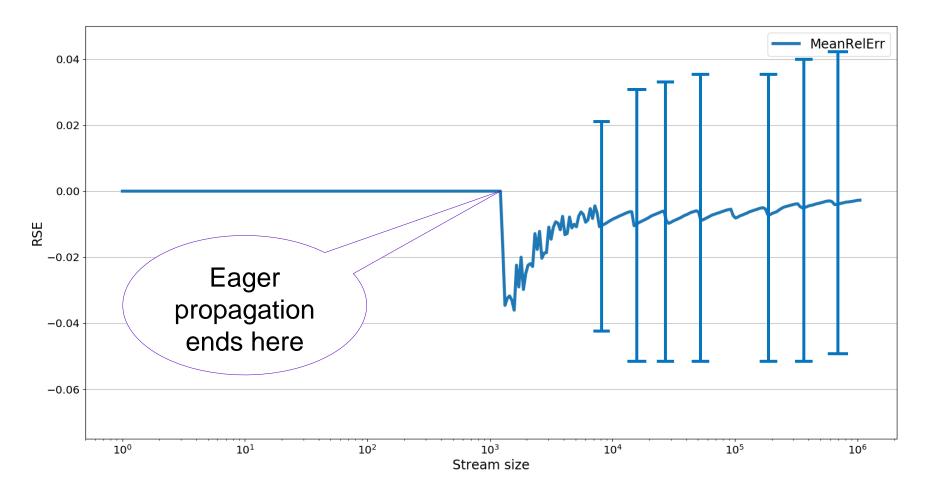
We then analyze the error of the relaxed specification

By strong linearizability, this is the error of our sketch!

Analyzed Error of Concurrent Θ sketch



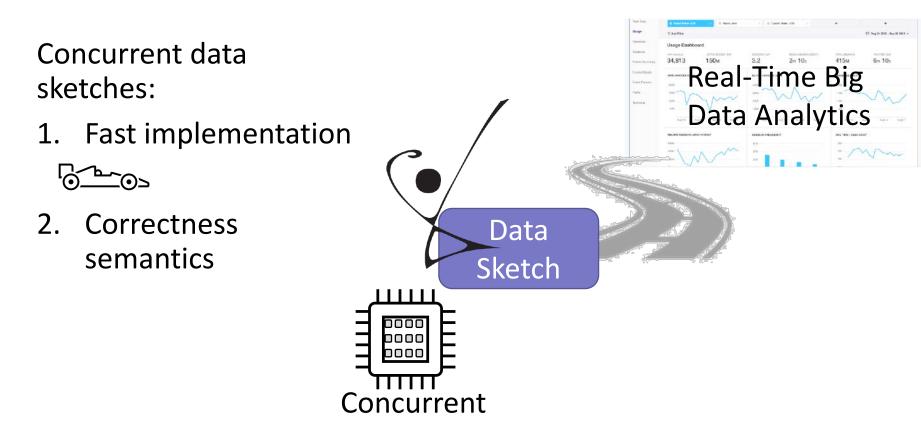
Empirical Evaluation of Relative Error

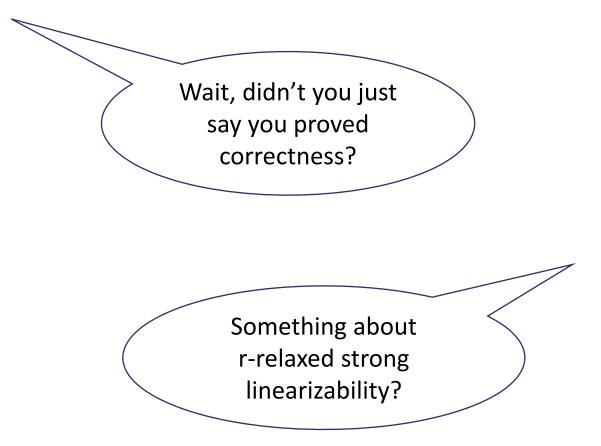


Interim Summary: Fast Concurrent Sketches

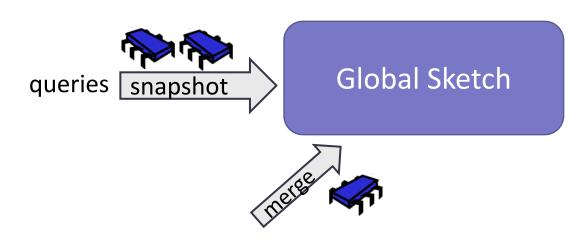
- Generic solution based on composable sketches
 - Rigorous correctness proof using relaxed consistency
- High throughput via concurrent updates
- Query freshness
 - Allow queries during updates
- Ease-of-use
 - Library responsible for synchronization
- Enjoy sketches' benefits
 - Fast
 - Bounded estimation error
 - Small memory footprint

Roadmap Recap





Concurrency on the Global Sketch Revisited

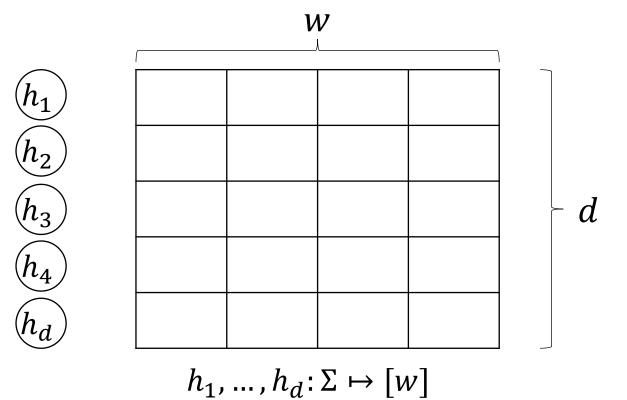


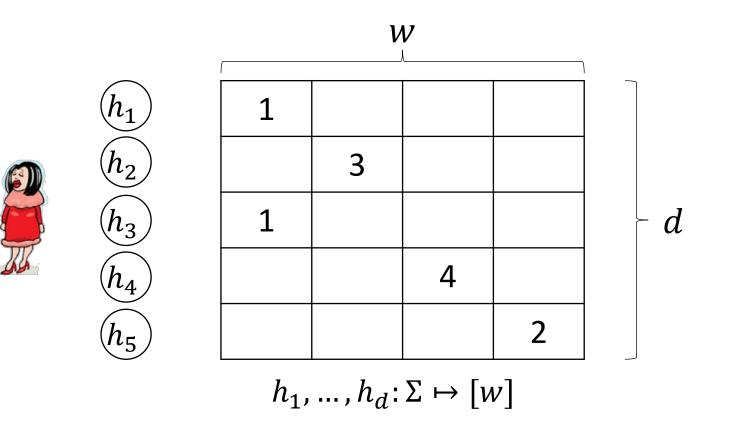
- The global sketch is strongly linearizable
 - The r-relaxation only arises due to buffering (local sketches)
- In general, this requires atomic snapshots
 - In the Θ sketch, snapshots are cheap
 - Alas, this is not always the case

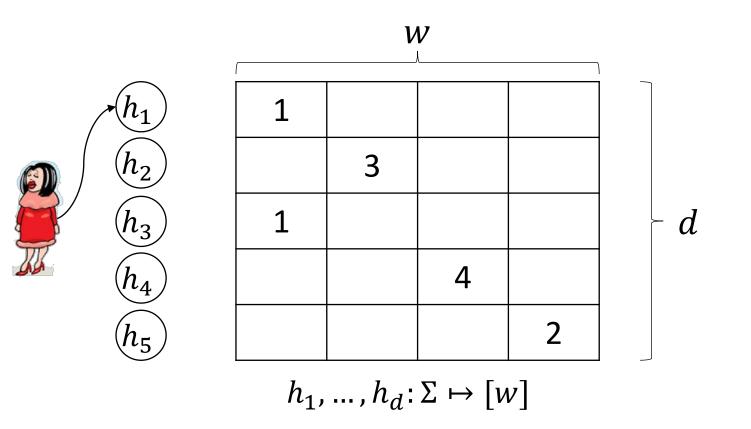
Told ya I'd say more about that.

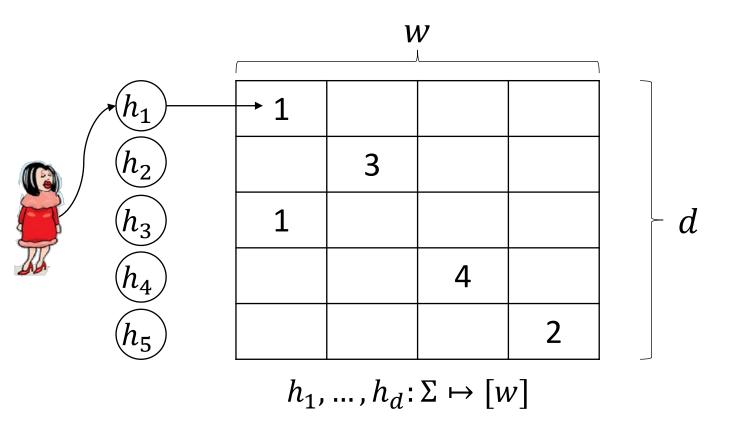
Example: CountMin Sketch [Cormode and Muthukrishna, 2005]

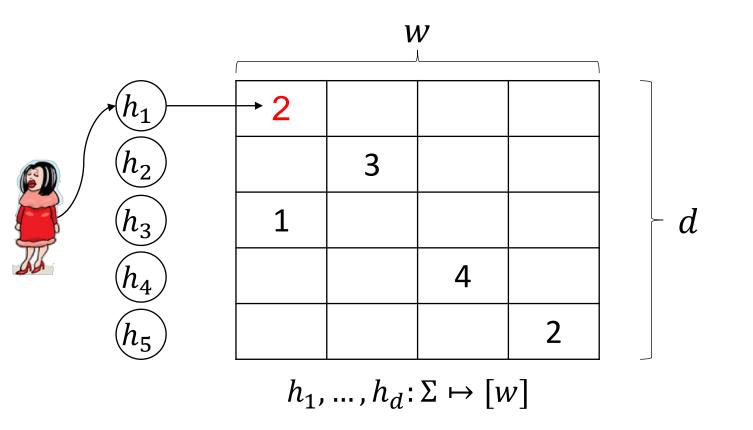
• Estimates item frequency

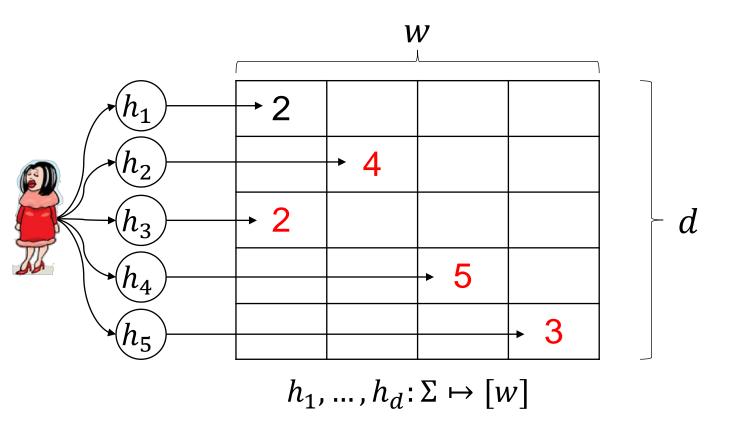


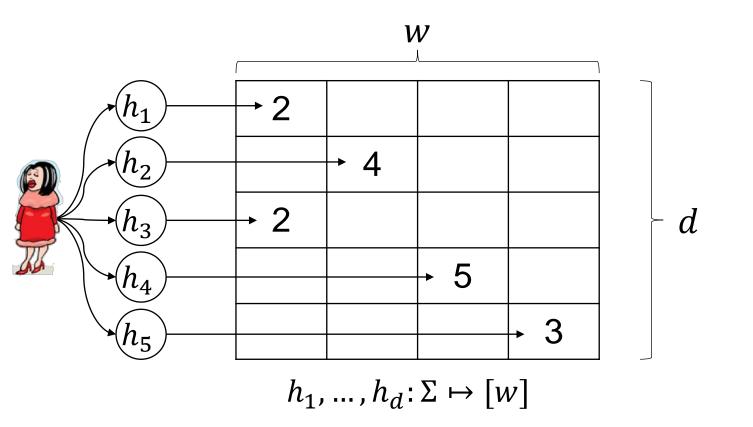


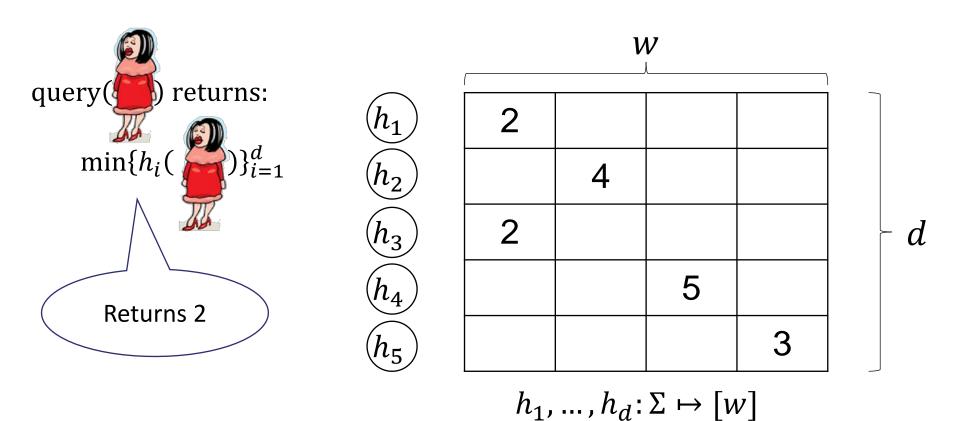












CountMin Sequential Error Bounds

- Consider a query invoked after N updates
- Let f(a) denote the frequency of a in these updates
- query(a) returns an estimate $\hat{f}(a)$ of f(a)
- For desired parameters ϵ, δ ,

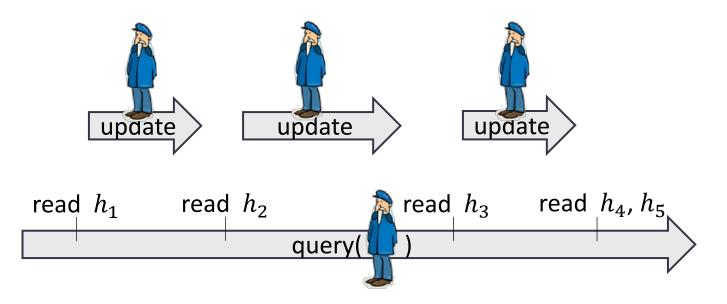
CountMin's parameters w and d can be chosen so that

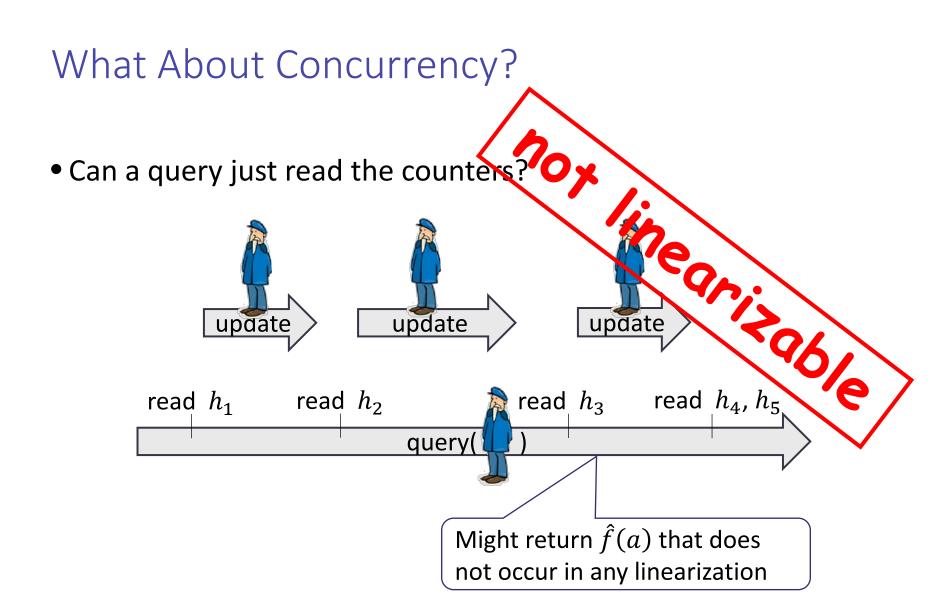
$$f(a) \leq \hat{f}(a)$$
, and with probability at least $1 - \delta$:
 $\hat{f}(a) \leq f(a) + \epsilon N$

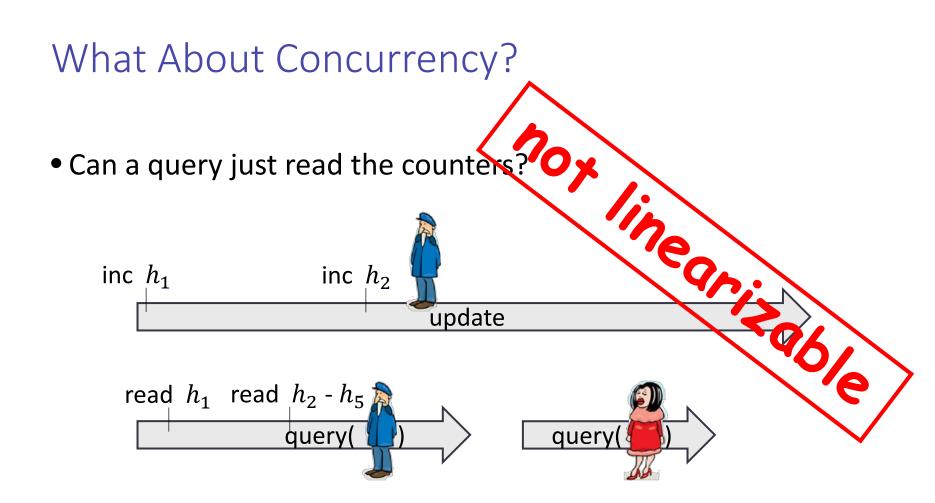
[Cormode and Muthukrishna, 2005]

What About Concurrency?

• Can a query just read the counters?





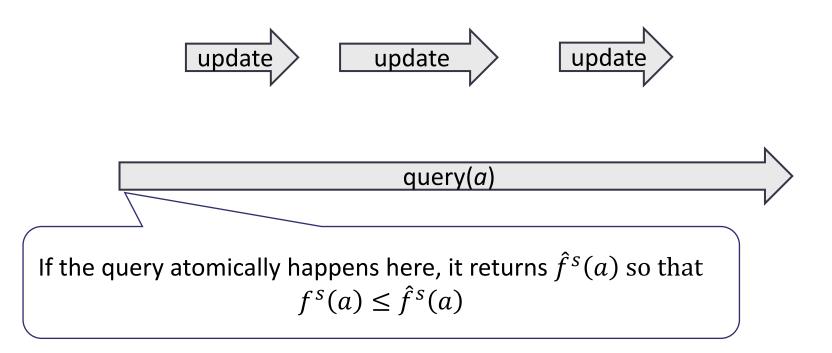


Problem?

- We required the shared global sketch to be strongly linearizable
- This makes it indistinguishable from an atomic variable
- And so preserves the error bounds of the sequential sketch
- Note: this holds for *any* sequential sketch
- But ... requires an atomic snapshot (costly)

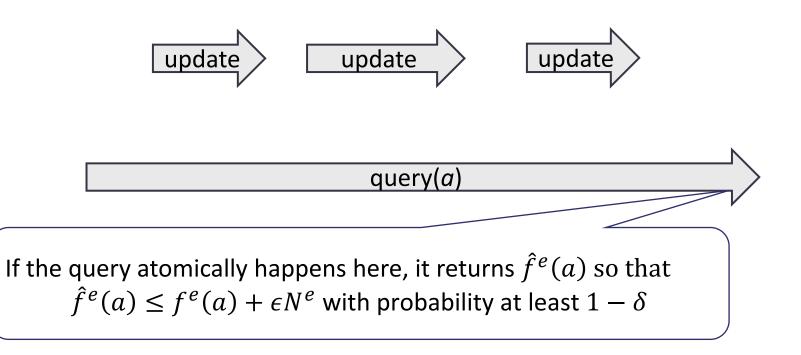
But ...

• What if a query just reads the counters?



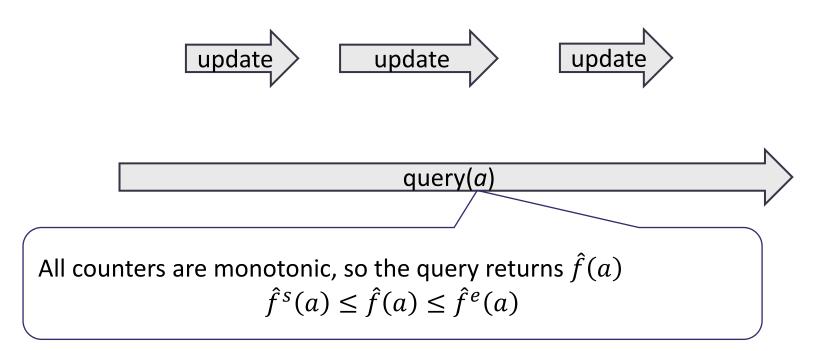
But ...

• What if a query just reads the counters?

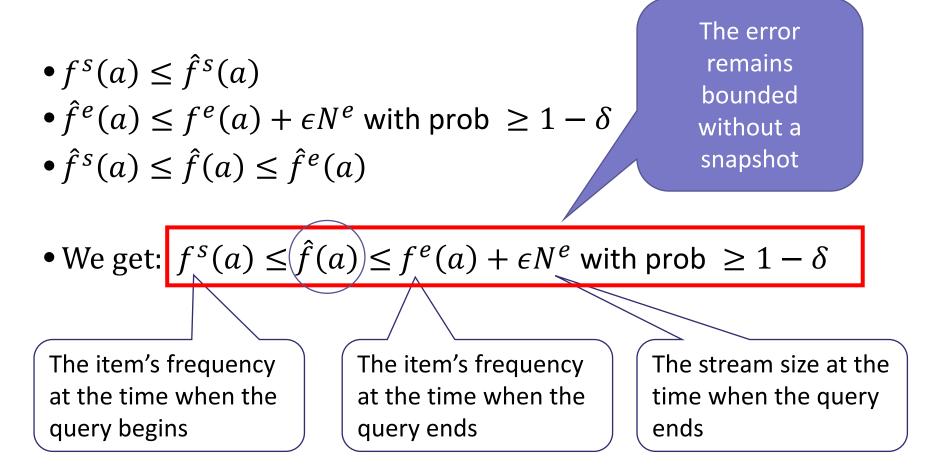


But ...

• What if a query just reads the counters?



So ...



OK, so a concurrent CountMin sketch does not need to be linearizable, but can you specify what it does need to ensure?

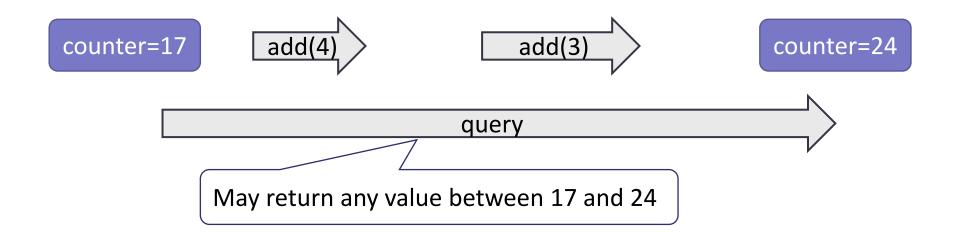
Better yet, can you specify a generic property that applies to many sketches?

Intermediate Value Linearizability (IVL)

- A correctness criterion for concurrent quantitative objects
 - A query returns a value from a totally ordered domain
 - E.g., sketches, counters
- Cheaper than linearizability
 - Inherently in some cases (see Arik's talk)
- Preserves the error bounds of the sequential object
- Enforces (non-relaxed) linearizability in sequential executions, allows more freedom in concurrent ones
- A local property (composable)

IVL – Simple Example

• Every query's return value is bounded between two legal values that can be returned in linearizations



$$(\epsilon, \delta)$$
-Bounded Objects

- For an ideal value v, a query returns a value v̂ such that with probability at least 1 − δ/2: v̂ ≥ v − ε and with probability at least 1 − δ/2: v̂ ≤ v + ε
- Many examples, including Θ, Quantiles, CountMin, ...

Our Main Theorem

An IVL implementation of a sequential (ϵ, δ) -bounded object is a concurrent (ϵ, δ) -bounded object.

To Conclude

• Big data analytics has big demands

- Memory is getting bigger more data can be analyzed in memory
- CPUs are not getting faster need to harness multi-cores
- Concurrent processing challenges:
 - Efficiency minimize synchronization, share pertinent information
 - Correctness analyze impact of concurrency on error
- Our contributions:
 - Framework for fast concurrent sketches
 - Correctness semantics with guaranteed error bounds

