
Self-Stabilizing Distributed
Data Structures

Christian Scheideler
Dept. of Computer Science

University of Paderborn

Joint work with Riko Jacob, Mikhail Nesterenko,
Andrea Richa, Stefan Schmid, and many others

Motivation

• Long history of concurrent data structures
• Most of them based on shared memory

ADGA 2012 Self-stabilizing Data Structures 2

Shared memory

Data structure

Motivation

• Shared memory is reliable, so no need for DS to
be fault-tolerant. But order in which system
executes access primitives is unpredictable.

ADGA 2012 Self-stabilizing Data Structures 3

Shared memory

Data structure

Motivation

Challenge: avoid illegal states

ADGA 2012 Self-stabilizing Data Structures 4

Shared memory

Data structure

Motivation
Situation different for large distributed systems:
• no (hardware-supported) shared memory available
• continuous change in membership and faults
• adversarial behavior
 Illegal states cannot be avoided.

ADGA 2012 Self-stabilizing Data Structures 5

Da ta str uct ure

Motivation
How to best manage a distributed data structure?
• Emulate a reliable shared memory layer

pro: only data plane con: can be expensive!
• Directly implement DS on top of system

pro: more efficient con: needs to take care of
dynamics, faults, and adversarial behavior by itself!

ADGA 2012 Self-stabilizing Data Structures 6

Da ta str uct ure

Topic of this Talk

Rigorous framework for study of efficient
and robust direct implementations of

distributed data structures

ADGA 2012 Self-stabilizing Data Structures 7

Da ta str uct ure

We will model data structures as directed graphs.
• Data structure established by computers / processes:

• Graph representation:

• Edge A  B means: A knows B

Model

nodes

edges

ADGA 2012 8Self-stabilizing Data Structures

Model
• Edge set EL: set of pairs (v,w) over all nodes v and w, with the

property that v has a link to w (explicit connections).

• Edge set EM: set of pairs (v,w) with the property that there is a
link request in v containing a reference to w (implicit
connections).

• Graph G=(V,EL∪EM): Graph of all explicit and implicit
connections.

v w

v w

ADGA 2012 9Self-stabilizing Data Structures

Model

Assumptions:
• nodes can only communicate via explicit

connections
• the requests are forwarded in FIFO order along an

explicit connection (FIFO: first-in-first-out)
• for simplicity: no corrupted references or references

to failed nodes (so here no need for failure
detectors)

ADGA 2012 Self-stabilizing Data Structures 10

Distributed Data Structures
Fundamental goal: topology of data structure (i.e., G) is

kept weakly connected at all times

Fundamental rule: never just „throw away“ a reference!

ADGA 2012 Self-stabilizing Data Structures 11

Distributed Data Structures
Admissible rules for distributed data structures:
• The following network changes are admissible for a node

u so that there is no danger of losing connectivity:

u

v

w
u

v

w

u

v

w
u

v

w

ADGA 2012 12Self-stabilizing Data Structures

Introduction:

Delegation:

Fusion: u u vv

Distributed Data Structures
Theorem 1: These rules are universal in a sense that one can

get from any weakly connected graph G=(V,E) to any strongly
connected graph G´=(V,E´) via these rules.

ADGA 2012 Self-stabilizing Data Structures 13

u

v

w
u

v

w

u

v

w
u

v

w

Introduction:

Delegation:

Fusion: u u vv

Distributed Data Structures
So introduction, delegation, and fusion allow a DS, in

principle, to recover from any illegal state.

Ideally: DS recovers monotonically from illegal state

ADGA 2012 Self-stabilizing Data Structures 14

Distributed Data Structures

Condition for reachability:
• Monotonic reachability: If there is a directed

path from u to v in G at time t, then also at
any time t´>t under the condition that no node
leaves the system or becomes faulty.

Remark: The introduction, delegation, and
fusion rules satisfy this condition.

Is reachability sufficient for a data structure?

ADGA 2012 Self-stabilizing Data Structures 15

Distributed Data Structures
Is reachability sufficient for a data structure?

No, because the operations of a
data structure only work if the data
structure has the desired form
(e.g., a binary search tree).

Therefore, we demand monotonic DS-reachability:
If v is reachable for DS-operations from u at time t, then also
at any time t´>t under the condition that no node leaves the
system or becomes faulty.

How can we stabilize a data structure DS while preserving
monotonic DS-reachability?

ADGA 2012 Self-stabilizing Data Structures 16

8

4 12

10 16

Self-Stabilizing Data Structures
Recall the fundamental concept of a data structure

Standard operation in sequential case:
Build-DS(S): given a set of elements S, construct data structure DS
for S

Distributed dynamic case:
Build-DS: distributed protocol that can stabilize DS from an arbitrary
weakly connected state and that can also guarantee monotonic DS-
reachability.

Data structure

Operation 1

Operation 2

Operation 3

ADGA 2012 17Self-stabilizing Data Structures

Self-Stabilizing Data Structures
Example: sorted list

Definition 2: Build-DS stabilizes the data structure DS if
1. when starting from an arbitrary weakly connected state, Build-DS

can get DS back into a legal state in finite time (convergence) and
2. when starting from an arbitrary legal state, Build-DS maintains a

legal state for DS (closure),
as long as no operations are executed in DS and no node leaves the
system or becomes faulty.
ADGA 2012 Self-stabilizing Data Structures 18

2 5 8 12 20
5

12

20

2

8

Illegal state Legal state

Build-DS

Self-Stabilizing Data Structures
What exactly do we mean by a „legal“ state?

Our approach: We call the state of a data structure DS legal if DS is
legal without considering the implicit connections.

Example: for a sorted list the following topology would be legal

Definition 3: Build-DS monotonically stabilizes the data structure DS if
Build-DS stabilizes DS (see Def. 2) and also ensures monotonic DS-
reachability.

ADGA 2012 Self-stabilizing Data Structures 19

2 5 8 12 20

Self-Stabilizing Data Structures

Observation: If Build-DS stabilizes a data structure, then
Build-DS could also be used to stabilize an operation.

Example: 2 initiates Insert(12) on a sorted list.

ADGA 2012 Self-stabilizing Data Structures 20

2 5 8 20

2 5 8 12 20

12
Insert(12)

Build-DS

2 5 8 20

Self-Stabilizing Data Structures

Sorted list: The Insert(v) operation has stabilized once v is
connected to the current pred(v) and succ(v).

Example: 2 initiates Insert(12) on a sorted list.

ADGA 2012 Self-stabilizing Data Structures 21

2 5 8 20

Insert(12)

Build-DS

2 5 8 20

2 5 8 12 20

12

Self-Stabilizing Data Structures

How do we want to measure the quality of a
distributed data structure DS?

Build-DS Protocol:
• Robustness criteria:

– Self-stabilization from any weakly connected state
– Monotonic DS-reachability

• Efficiency criteria:
– Low worst-case time/work for self-stabilization
– Low maintenance overhead in stable state
– Low worst-case time/work for stabilization of a single

operation on a stable DS

ADGA 2012 Self-stabilizing Data Structures 22

Self-Stabilizing Data Structures
Time model:
• We allow an arbitrary asynchronous execution of the

requests by the processes.
• A round is over once every process that has requests to

execute executed at least one of these requests.
• We measure the runtime in the number of rounds.

ADGA 2012 Self-stabilizing Data Structures 23

process 1

process 2

process 3

process 4

time

: activity

round 1 round 2 round 3

Sorted List

Build-List:

2

4

5

1

3

1 2 3 4 5

ADGA 2012 24Self-stabilizing Data Structures

Sorted List
Ideal state:

Operations:
• Build-List: forms a sorted list out of any weakly

connected state
• Insert(v): insert node v into list
• Delete(v): remove node v from list
• Lookup(id): sends lookup request to that node w

with id(w)=id

1 2 3 4 5

ADGA 2012 25Self-stabilizing Data Structures

Sorted List
Variables in a node v:
• v.id: ID of node v in some ordered space
• v.l ∈ V∪{}: closest left neighbor of v
• v.r ∈ V∪{}: closest right neighbor of v

Build

Insert

Delete

Lookup

l

r

Q

ADGA 2012 26Self-stabilizing Data Structures

id

Sorted List
Build-List via linearization:
Idea: keep edges to closest neighbors and delegate rest.

Upon Build-List(1): 4 generates request 2Bild-List(1)

4321 5 6

4321 5 6

ADGA 2012 27Self-stabilizing Data Structures

Sorted List
Build-List via linearization:
Idea: keep edges to closest neighbors and delegate rest.

Upon Build-List(3): 4 sets 4.l:=3 and generates request
3Build-List(2)

ADGA 2012 28Self-stabilizing Data Structures

4321 5 6

4321 5 6

Sorted List
Build-List via linearization:
Idea: keep edges to closest neighbors and delegate rest.

Upon Build-List(2) oder Build-List(5): 4 fuses that with
existing edge.

ADGA 2012 29Self-stabilizing Data Structures

4321 5 6

4321 5 6

Sorted List
Build-List via linearization:
Idea: keep edges to closest neighbors and delegate rest.

Periodically, we also execute Build-List(): 4 generates
requests 2Build-List(4) und 5Build-List(4) .

ADGA 2012 30Self-stabilizing Data Structures

4321 5 6

4321 5 6

Sorted List
Theorem 4 (Convergence): For any weakly connected graph

G=(V,EL∪EM), Build-List generates a sorted list.
Proof sketch:
• Consider an arbitrary neighboring pair v,w w.r.t. sorted list.
• Since G is weakly connected, there is a (not necessarily directed)

path in G from v to w.

v w

range of path from v to w shrinks monotonically

ADGA 2012 31Self-stabilizing Data Structures

Sorted List
Theorem 5 (Closure): If the explicit edges already form a sorted list,

then these edges will be preserved under any Build-List call.
Proof:

• An explicit edge is only given up if the node learns about a closer
node.

• Once the explicit edges form a sorted list, this does not happen any
more. Indeed, in this case the implicit edges will only be delegated
further until they merge with an explicit edge.

• Hence, at the end we are only left with the sorted list.

ADGA 2012 32Self-stabilizing Data Structures

v w

Sorted List
Theorem 6: Build-List guarantees monotonic List-reachability.
Proof sketch:
• Node w is list-reachable from node v if there is a sequence of

(u,u.r)-edges (resp. (u,u.l)-edges) that leads from v to w.

• This property can be violated if an edge is delegated.

ADGA 2012 Self-stabilizing Data Structures 33

v x wy …

x z y x z y

Sorted List
Theorem 6: Build-List guarantees monotonic List-reachability.
Proof sketch:
• Node w is list-reachable from node v if there is a sequence of

(u,u.r)-edges (resp. (u,u.l)-edges) that leads from v to w.

• However, we only need a weaker condition for the operations:
If an operation is able to get from v to w, then there must be a
sequence of (u,u.r)-edges (resp. (u,u.l)-edges) over time that
leads from v to w.

ADGA 2012 Self-stabilizing Data Structures 34

v x wy …

Line Metric
Theorem 6: Build-List guarantees monotonic List-reachability.
Proof sketch:
• Suppose that we are in a situation in which Op is to be sent to

y and Op is executed after Build-List(y) in x.

• Then y is delegated to z and afterwards, Op is delegated to z
as well (or a closer node), so that Op is still executed after
Build-List(y) due to the FIFO rule on links.

• Inductive proof: Op eventually reaches y.

ADGA 2012 Self-stabilizing Data Structures 35

x z y x z y
Op

Op

Sorted List
Insert(v):
• Suppose that node u executes the request Insert(v).
• Then u simply calls uBuild-List(v).
• The Build-List protocol will then incorporate v in the right

position in the ordered list, i.e., Build-List stabilizes the
Insert operation.

1 2 3 5 6

4

ADGA 2012 36Self-stabilizing Data Structures

v

u

Sorted List
Insert(v):
• Suppose that node u executes the request Insert(v).
• Then u simply calls uBuild-List(v).
• The Build-List protocol will then incorporate v in the right

position in the ordered list, i.e., Build-List stabilizes the
Insert operation.

1 2 3 5 6

4

ADGA 2012 37Self-stabilizing Data Structures

v

Sorted List
Insert(v):
• Suppose that node u executes the request Insert(v).
• Then u simply calls uBuild-List(v).
• The Build-List protocol will then incorporate v in the right

position in the ordered list, i.e., Build-List stabilizes the
Insert operation while preserving monotonic list-
reachability.

1 2 3 5 6

4

ADGA 2012 38Self-stabilizing Data Structures

v

Sorted List
Delete(v): we assume that a node v can only delete

itself.
How to stabilize Delete(v) so that monotonic list-

reachability is preserved?

• a leaving node v starts converting its explicit edges
into special leave edges and adds a new edge that
connects its current predecessor and successor

ADGA 2012 39Self-stabilizing Data Structures

1 2 3 4 5

Sorted List
Delete(v): we assume that a node v can only delete

itself.
How to stabilize Delete(v) so that monotonic list-

reachability is preserved?

• the leaving nodes continue the conversions till no
leaving node is connected to a non-leaving edge

ADGA 2012 40Self-stabilizing Data Structures

1 2 3 4 5

Sorted List
Delete(v): we assume that a node v can only delete

itself.
How to stabilize Delete(v) so that monotonic list-

reachability is preserved?

• non-leaving nodes only use standard (non-leaving)
edges to forward requests

• leaving nodes do not generate any further requests
ADGA 2012 41Self-stabilizing Data Structures

1 2 3 4 5

Sorted List
Delete(v): we assume that a node v can only delete

itself.
How to stabilize Delete(v) so that monotonic list-

reachability is preserved?

• once a leaving node has no requests any more, it
leaves the system (and takes all of its edges with it)

ADGA 2012 42Self-stabilizing Data Structures

1 2 4 5

Sorted List
Delete(v): we assume that a node v can only delete

itself.
How to stabilize Delete(v) so that monotonic list-

reachability is preserved?

• once a leaving node has no requests any more, it
leaves the system (and takes all of its edges with it)

ADGA 2012 43Self-stabilizing Data Structures

1 5

Conclusion
Our hope: starting point to design efficient and robust distributed data

structures for large distributed systems.

Self-stabilizing protocols (simpler models & properties):
• Hypertrees [Dolev, Kat 2004]
• Sorted list [Onus, Richa, S 2007]
• Skip lists [Clouser, Nesterenko, S 2008]
• Skip graphs [Jacob, Richa, S, Schmid,Täubig 2009]
• Delaunay graphs [Jacob, Ritscher, S. Schmid 2009]
• De Bruijn graphs [Richa, S, Stevens 2011]
• Chord network [Kniesburges, Koutsopoulos, S 2011]
• Universal [Berns, Ghosh, Pemmeraju 2011]

Very young research area. Runtime and churn not yet well-understood,
so much more work needed.

ADGA 2012 Self-stabilizing Data Structures 44

Questions?

ADGA 2012 Self-stabilizing Data Structures 45

