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Motivation

• Long history of concurrent data structures
• Most of them based on shared memory
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Motivation

• Shared memory is reliable, so no need for DS to
be fault-tolerant. But order in which system
executes access primitives is unpredictable.
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Motivation

Challenge: avoid illegal states
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Motivation
Situation different for large distributed systems:
• no (hardware-supported) shared memory available
• continuous change in membership and faults
• adversarial behavior
 Illegal states cannot be avoided.
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Motivation
How to best manage a distributed data structure?
• Emulate a reliable shared memory layer

pro: only data plane con: can be expensive!
• Directly implement DS on top of system

pro: more efficient con: needs to take care of
dynamics, faults, and adversarial behavior by itself!
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Topic of this Talk

Rigorous framework for study of efficient
and robust direct implementations of

distributed data structures
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We will model data structures as directed graphs.
• Data structure established by computers / processes:

• Graph representation:

• Edge  A  B  means: A knows B

Model

nodes

edges
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Model
• Edge set EL: set of pairs (v,w) over all nodes v and w, with the 

property that v has a link to w (explicit connections).

• Edge set EM: set of pairs (v,w) with the property that there is a 
link request in v containing a reference to w (implicit 
connections).

• Graph G=(V,EL∪EM): Graph of all explicit and implicit 
connections.

v w

v w
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Model

Assumptions: 
• nodes can only communicate via explicit 

connections
• the requests are forwarded in FIFO order along an 

explicit connection (FIFO: first-in-first-out)
• for simplicity: no corrupted references or references

to failed nodes (so here no need for failure
detectors)
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Distributed Data Structures
Fundamental goal: topology of data structure (i.e., G) is 

kept weakly connected at all times

Fundamental rule: never just „throw away“ a reference!
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Distributed Data Structures
Admissible rules for distributed data structures:
• The following network changes are admissible for a node

u so that there is no danger of losing connectivity:

u

v

w
u

v

w

u

v

w
u

v

w

ADGA 2012 12Self-stabilizing Data Structures

Introduction:

Delegation:

Fusion: u u vv



Distributed Data Structures
Theorem 1: These rules are universal in a sense that one can 

get from any weakly connected graph G=(V,E) to any strongly 
connected graph G´=(V,E´) via these rules.
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Distributed Data Structures
So introduction, delegation, and fusion allow a DS, in 

principle, to recover from any illegal state.

Ideally: DS recovers monotonically from illegal state
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Distributed Data Structures

Condition for reachability:
• Monotonic reachability: If there is a directed

path from u to v in G at time t, then also at 
any time t´>t under the condition that no node 
leaves the system or becomes faulty.

Remark: The introduction, delegation, and
fusion rules satisfy this condition.

Is reachability sufficient for a data structure?
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Distributed Data Structures
Is reachability sufficient for a data structure?

No, because the operations of a 
data structure only work if the data
structure has the desired form 
(e.g., a binary search tree).

Therefore, we demand monotonic DS-reachability: 
If v is reachable for DS-operations from u at time t, then also 
at any time t´>t under the condition that no node leaves the 
system or becomes faulty. 

How can we stabilize a data structure DS while preserving
monotonic DS-reachability?
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Self-Stabilizing Data Structures
Recall the fundamental concept of a data structure

Standard operation in sequential case: 
Build-DS(S): given a set of elements S, construct data structure DS
for S

Distributed dynamic case:
Build-DS: distributed protocol that can stabilize DS from an arbitrary 
weakly connected state and that can also guarantee monotonic DS-
reachability.

Data structure

Operation 1

Operation 2

Operation 3
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Self-Stabilizing Data Structures
Example: sorted list

Definition 2: Build-DS stabilizes the data structure DS if
1. when starting from an arbitrary weakly connected state, Build-DS 

can get DS back into a legal state in finite time (convergence) and 
2. when starting from an arbitrary legal state, Build-DS maintains a 

legal state for DS (closure), 
as long as no operations are executed in DS and no node leaves the 
system or becomes faulty.
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Self-Stabilizing Data Structures
What exactly do we mean by a „legal“ state?

Our approach: We call the state of a data structure DS legal if DS is 
legal without considering the implicit connections.

Example: for a sorted list the following topology would be legal

Definition 3: Build-DS monotonically stabilizes the data structure DS if 
Build-DS stabilizes DS (see Def. 2) and also ensures monotonic DS-
reachability.
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Self-Stabilizing Data Structures

Observation: If Build-DS stabilizes a data structure, then 
Build-DS could also be used to stabilize an operation.

Example: 2 initiates Insert(12) on a sorted list.
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Self-Stabilizing Data Structures

Sorted list: The Insert(v) operation has stabilized once v is
connected to the current pred(v) and succ(v).

Example: 2 initiates Insert(12) on a sorted list.
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Self-Stabilizing Data Structures

How do we want to measure the quality of a 
distributed data structure DS?

Build-DS Protocol:
• Robustness criteria:

– Self-stabilization from any weakly connected state
– Monotonic DS-reachability

• Efficiency criteria: 
– Low worst-case time/work for self-stabilization
– Low maintenance overhead in stable state
– Low worst-case time/work for stabilization of a single

operation on a stable DS
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Self-Stabilizing Data Structures
Time model:
• We allow an arbitrary asynchronous execution of the

requests by the processes. 
• A round is over once every process that has requests to 

execute executed at least one of these requests.
• We measure the runtime in the number of rounds.
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Sorted List

Build-List:

2

4

5

1

3

1 2 3 4 5
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Sorted List
Ideal state:

Operations:
• Build-List: forms a sorted list out of any weakly 

connected state
• Insert(v): insert node v into list
• Delete(v): remove node v from list
• Lookup(id): sends lookup request to that node w

with id(w)=id

1 2 3 4 5
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Sorted List
Variables in a node v:
• v.id: ID of node v in some ordered space
• v.l ∈ V∪{}: closest left neighbor of v
• v.r ∈ V∪{}: closest right neighbor of v

Build

Insert

Delete

Lookup

l

r

Q
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Sorted List
Build-List via linearization:
Idea: keep edges to closest neighbors and delegate rest.

Upon Build-List(1): 4 generates request 2Bild-List(1)

4321 5 6

4321 5 6
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Sorted List
Build-List via linearization:
Idea: keep edges to closest neighbors and delegate rest.

Upon Build-List(3): 4 sets 4.l:=3 and generates request 
3Build-List(2)
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Sorted List
Build-List via linearization:
Idea: keep edges to closest neighbors and delegate rest.

Upon Build-List(2) oder Build-List(5): 4 fuses that with 
existing edge.

ADGA 2012 29Self-stabilizing Data Structures

4321 5 6

4321 5 6



Sorted List
Build-List via linearization:
Idea: keep edges to closest neighbors and delegate rest.

Periodically, we also execute Build-List(): 4 generates 
requests 2Build-List(4) und 5Build-List(4) .
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Sorted List
Theorem 4 (Convergence): For any weakly connected graph 

G=(V,EL∪EM), Build-List generates a sorted list.
Proof sketch:
• Consider an arbitrary neighboring pair v,w w.r.t. sorted list.
• Since G is weakly connected, there is a (not necessarily directed) 

path in G from v to w.

v w

range of path from v to w shrinks monotonically
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Sorted List
Theorem 5 (Closure): If the explicit edges already form a sorted list, 

then these edges will be preserved under any Build-List call. 
Proof:

• An explicit edge is only given up if the node learns about a closer 
node.

• Once the explicit edges form a sorted list, this does not happen any
more. Indeed, in this case the implicit edges will only be delegated 
further until they merge with an explicit edge.

• Hence, at the end we are only left with the sorted list.
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Sorted List
Theorem 6: Build-List guarantees monotonic List-reachability.
Proof sketch:
• Node w is list-reachable from node v if there is a sequence of 

(u,u.r)-edges (resp. (u,u.l)-edges) that leads from v to w.

• This property can be violated if an edge is delegated.
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Sorted List
Theorem 6: Build-List guarantees monotonic List-reachability.
Proof sketch:
• Node w is list-reachable from node v if there is a sequence of 

(u,u.r)-edges (resp. (u,u.l)-edges) that leads from v to w.

• However, we only need a weaker condition for the operations: 
If an operation is able to get from v to w, then there must be a 
sequence of (u,u.r)-edges (resp. (u,u.l)-edges)  over time that 
leads from v to w.
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Line Metric
Theorem 6: Build-List guarantees monotonic List-reachability.
Proof sketch:
• Suppose that we are in a situation in which Op is to be sent to 

y and Op is executed after Build-List(y) in x.

• Then y is delegated to z and afterwards, Op is delegated to z
as well (or a closer node), so that Op is still executed after
Build-List(y) due to the FIFO rule on links.

• Inductive proof: Op eventually reaches y.
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Sorted List
Insert(v): 
• Suppose that node u executes the request Insert(v).
• Then u simply calls uBuild-List(v).
• The Build-List protocol will then incorporate v in the right 

position in the ordered list, i.e., Build-List stabilizes the 
Insert operation.

1 2 3 5 6

4
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Sorted List
Insert(v): 
• Suppose that node u executes the request Insert(v).
• Then u simply calls uBuild-List(v).
• The Build-List protocol will then incorporate v in the right 

position in the ordered list, i.e., Build-List stabilizes the 
Insert operation.

1 2 3 5 6

4
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Sorted List
Insert(v): 
• Suppose that node u executes the request Insert(v).
• Then u simply calls uBuild-List(v).
• The Build-List protocol will then incorporate v in the right 

position in the ordered list, i.e., Build-List stabilizes the 
Insert operation while preserving monotonic list-
reachability.

1 2 3 5 6

4
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Sorted List
Delete(v): we assume that a node v can only delete 

itself.
How to stabilize Delete(v) so that monotonic list-

reachability is preserved? 

• a leaving node v starts converting its explicit edges
into special leave edges and adds a new edge that
connects its current predecessor and successor
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Sorted List
Delete(v): we assume that a node v can only delete 

itself.
How to stabilize Delete(v) so that monotonic list-

reachability is preserved? 

• the leaving nodes continue the conversions till no
leaving node is connected to a non-leaving edge
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Sorted List
Delete(v): we assume that a node v can only delete 

itself.
How to stabilize Delete(v) so that monotonic list-

reachability is preserved? 

• non-leaving nodes only use standard (non-leaving) 
edges to forward requests

• leaving nodes do not generate any further requests
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Sorted List
Delete(v): we assume that a node v can only delete 

itself.
How to stabilize Delete(v) so that monotonic list-

reachability is preserved? 

• once a leaving node has no requests any more, it
leaves the system (and takes all of its edges with it)
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Sorted List
Delete(v): we assume that a node v can only delete 

itself.
How to stabilize Delete(v) so that monotonic list-

reachability is preserved? 

• once a leaving node has no requests any more, it
leaves the system (and takes all of its edges with it)
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Conclusion
Our hope: starting point to design efficient and robust distributed data

structures for large distributed systems.

Self-stabilizing protocols (simpler models & properties):
• Hypertrees [Dolev, Kat 2004]
• Sorted list [Onus, Richa, S 2007]
• Skip lists [Clouser, Nesterenko, S 2008]
• Skip graphs [Jacob, Richa, S, Schmid,Täubig 2009]
• Delaunay graphs [Jacob, Ritscher, S. Schmid 2009]
• De Bruijn graphs [Richa, S, Stevens 2011]
• Chord network [Kniesburges, Koutsopoulos, S 2011]
• Universal [Berns, Ghosh, Pemmeraju 2011]

Very young research area. Runtime and churn not yet well-understood, 
so much more work needed.
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Questions?
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