Self-Stabilizing Distributed
Data Structures

Christian Scheideler
Dept. of Computer Science
University of Paderborn

Joint work with Riko Jacob, Mikhail Nesterenko,
Andrea Richa, Stefan Schmid, and many others

Motivation

* Long history of concurrent data structures
e Most of them based on shared memory

i g _ il g

L 5 S N

Data structure

Shared memory

ADGA 2012 Self-stabilizing Data Structures

Motivation

« Shared memory is reliable, so no need for DS to
be fault-tolerant. But order in which system
executes access primitives Is unpredictable.

i o _ el <

Data structure

Shared memory

ADGA 2012 Self-stabilizing Data Structures

Motivation

Challenge: avoid illegal states

ADGA 2012

-
P

Data structure

Shared memory

Self-stabilizing Data Structures

Motivation

Situation different for large distributed systems:

* no (hardware-supported) shared memory available
e continuous change in membership and faults

e adversarial behavior

— lllegal states cannot be avoided.

¢ € € ¢ ¥

ADGA 2012 Self-stabilizing Data Structures

Motivation

How to best manage a distributed data structure?

 Emulate a reliable shared memory layer
pro: only data plane con: can be expensive!

* Directly implement DS on top of system
pro: more efficient con: needs to take care of

dynamics, faults, and adversarial behavior by itself!

€ € € € ¢

ADGA 2012 Self-stabilizing Data Structures

Topic of this Talk

Rigorous framework for study of efficient
and robust direct implementations of
distributed data structures

€ € € € ¢

ADGA 2012 Self-stabilizing Data Structures

Model

We will model data structures as directed graphs.
e Data structure established by computers / processes:

« Edge A — B means: A knows B

ADGA 2012 Self-stabilizing Data Structures

Model

» Edge set E,: set of pairs (v,w) over all nodes v and w, with the
property that v has a link to w (explicit connections).

O, ()

» Edge set E,;: set of pairs (v,w) with the property that there is a
link request In v containing a reference to w (implicit
connections).

 Graph G=(V,E,UE,,): Graph of all explicit and implicit
connections.

ADGA 2012 Self-stabilizing Data Structures 9

Model

e

* nodes can only communicate via explicit
connections

» the requests are forwarded in FIFO order along an
explicit connection (FIFO: first-in-first-out)

« for simplicity: no corrupted references or references
to failed nodes (so here no need for failure
detectors)

ADGA 2012 Self-stabilizing Data Structures 10

Distributed Data Structures

Fundamental goal: topology of data structure (i.e., G) Is
kept weakly connected at all times

Fundamental rule: never just ,throw away“ a reference!

ADGA 2012 Self-stabilizing Data Structures 11

Distributed Data Structures

Admissible rules for distributed data structures:

e The following network changes are admissible for a node
u so that there is no danger of losing connectivity:

)V)V

Introduction: u < —_— U <l
W W
. Vv Vv

Delegation: ! < —_ U /l
. W

.W

Fusion; u 3—=9>dHv —_— U) S5Pv

ADGA 2012 Self-stabilizing Data Structures 12

Distributed Data Structures

Theorem 1: These rules are universal in a sense that one can
get from any weakly connected graph G=(V,E) to any strongly
connected graph G =(V,E") via these rules.

)V)V

Introduction: u < —> u <l
W W
. Vv Vv

Delegation: ! < —_ U /l
. W

.W

Fusion; u 3—=9>dHv —_— U) S5Pv

ADGA 2012 Self-stabilizing Data Structures 13

Distributed Data Structures

So introduction, delegation, and fusion allow a DS, in
principle, to recover from any illegal state.

ldeally: DS recovers monotonically from illegal state

ADGA 2012 Self-stabilizing Data Structures 14

Distributed Data Structures

Condition for reachability:

 Monotonic reachabllity: If there iIs a directed
path from u to vin G at time t, then also at
any time t" >t under the condition that no node
leaves the system or becomes faulty.

Remark: The introduction, delegation, and
fusion rules satisfy this condition.

Is reachability sufficient for a data structure?

ADGA 2012 Self-stabilizing Data Structures 15

Distributed Data Structures

Is reachability sufficient for a data structure?

No, because the operations of a (8)

data structure only work if the data

structure has the desired form @ (12
(e.g., a binary search tree). (10) (16)

Therefore, we demand monotonic DS-reachability:
If v is reachable for DS-operations from u at time t, then also
at any time t">t under the condition that no node leaves the

system or becomes faulty.

How can we stabilize a data structure DS while preserving
monotonic DS-reachability?

ADGA 2012 Self-stabilizing Data Structures 16

Self-Stabilizing Data Structures

Recall the fundamental concept of a data structure

Operation 1

Data structure Operation 2

111

Operation 3

Standard operation in sequential case:
Build-DS(S): given a set of elements S, construct data structure DS

for S

Distributed dynamic case: N _
Build-DS: distributed protocol that can stabilize DS from an arbitrary
weakly connected state and that can also guarantee monotonic DS-

reachability.

ADGA 2012 Self-stabilizing Data Structures 17

Self-Stabilizing Data Structures

Example: sorted list

lllegal state Legal state
Build-DS

o
Ny ® o @o@o@o@od

Definition 2: Build-DS stabilizes the data structure DS if

1. when starting from an arbitrary weakly connected state, Build-DS
can get DS back into a legal state in finite time (convergence) and

2. when starting from an arbitrary legal state, Build-DS maintains a
legal state for DS (closure),

as long as no operations are executed in DS and no node leaves the

system or becomes faulty.
ADGA 2012 Self-stabilizing Data Structures 18

Self-Stabilizing Data Structures

What exactly do we mean by a ,legal” state?

Our approach: We call the state of a data structure DS legal if DS is
legal without considering the implicit connections.

Example: for a sorted list the following topology would be legal

e =

Definition 3: Build-DS monotonically stabilizes the data structure DS if
Build-DS stabilizes DS (see Def. 2) and also ensures monotonic DS-
reachability.

ADGA 2012 Self-stabilizing Data Structures 19

Self-Stabilizing Data Structures

Observation: If Build-DS stabilizes a data structure, then
Build-DS could also be used to stabilize an operation.

Example: 2 initiates Insert(12) on a sorted list.

Insert(12) - 7@
-
Build-DS

= @e@e@eew

ADGA 2012 Self-stabilizing Data Structures 20

Self-Stabilizing Data Structures

Sorted list: The Insert(v) operation has stabilized once v is
connected to the current pred(v) and succ(v).

Example: 2 initiates Insert(12) on a sorted list.

Insert(12) - 7@
-
Build-DS

= @e@e@eew

ADGA 2012 Self-stabilizing Data Structures 21

Self-Stabilizing Data Structures

How do we want to measure the quality of a
distributed data structure DS?

Build-DS Protocol:
 Robustness criteria:
— Self-stabilization from any weakly connected state
— Monotonic DS-reachability
« Efficiency criteria:
— Low worst-case time/work for self-stabilization
— Low maintenance overhead in stable state

— Low worst-case time/work for stabilization of a single
operation on a stable DS

ADGA 2012 Self-stabilizing Data Structures

22

Self-Stabilizing Data Structures

Time model:

 We allow an arbitrary asynchronous execution of the
requests by the processes.

e A round is over once every process that has requests to
execute executed at least one of these requests.

e We measure the runtime in the number of rounds.

A @ : activity
process 4 @ -0
process 3 ® ® ®
process 2 @ ® ®
process1 1T— @@ ®-@ ®
round 1 round 2 round 3 tim:

ADGA 2012 Self-stabilizing Data Structures

23

Sorted List

Bu”dgi@e@'% 3@
}

O—E 0 0 (&

ADGA 2012 Self-stabilizing D

Sorted List

|deal state:
Operations:

« Build-List: forms a sorted list out of any weakly
connected state

* Insert(v): insert node v into list
e Delete(v): remove node v from list

« Lookup(id): sends lookup request to that node w
with id(w)=id

ADGA 2012 Self-stabilizing Data Structures 25

Sorted List

Variables in a node v:

 v.id: ID of node v in some ordered space
« v.| € VU{Y}: closest left neighbor of v
o v.r € VU{U}. closest right neighbor of v

id Build o
<
I Insert T T
€ 7 Delete
Lookup

ADGA 2012 Self-stabilizing Data Structures

26

Sorted List

Build-List via linearization:
ldea: keep edges to closest neighbors and delegate rest.

e
- = -~

Upon Build-List(1): 4 generates request 2<-Bild-List(1)

¢ 00w 6

ADGA 2012 Self-stabilizing Data Structures 27

Sorted List

Build-List via linearization:
ldea: keep edges to closest neighbors and delegate rest.

o & 60w 6

Upon Build-List(3): 4 sets 4.:=3 and generates request
3«Build-List(2)

oRORORoRCRC

ADGA 2012 Self-stabilizing Data Structures 28

Sorted List

Build-List via linearization:
ldea: keep edges to closest neighbors and delegate rest.

P i

o d oo @

Upon Build-List(2) oder Build-List(5): 4 fuses that with
existing edge.

T ®0 B e

ADGA 2012 Self-stabilizing Data Structures 29

Sorted List

Build-List via linearization:
ldea: keep edges to closest neighbors and delegate rest.

od ®06b 6

Periodically, we also execute Build-List(): 4 generates
requests 2<«-Build-List(4) und 5<«-Build-List(4) .

SECEONORORC

——————

ADGA 2012 Self-stabilizing Data Structures 30

Sorted List

Theorem 4 (Convergence): For any weakly connected graph
G=(V,E,UE,,), Build-List generates a sorted list.

Proof sketch:
« Consider an arbitrary neighboring pair v,w w.r.t. sorted list.

* Since G is weakly connected, there is a (not necessarily directed)
path in G from v to w.

range of path from v to w shrinks monotonically

ADGA 2012 Self-stabilizing Data Structures 31

Sorted List

Theorem 5 (Closure): If the explicit edges already form a sorted list,
then these edges will be preserved under any Build-List call.

Proof:

* An explicit edge is only given up if the node learns about a closer
node.

» Once the explicit edges form a sorted list, this does not happen any
more. Indeed, in this case the implicit edges will only be delegated
further until they merge with an explicit edge.

 Hence, at the end we are only left with the sorted list.

ADGA 2012 Self-stabilizing Data Structures 32

Sorted List

Theorem 6: Build-List guarantees monotonic List-reachability.
Proof sketch:

 Node w is list-reachable from node v if there is a sequence of
(u,u.r)-edges (resp. (u,u.l)-edges) that leads from v to w.

« This property can be violated if an edge is delegated.

e - @ O B

ADGA 2012 Self-stabilizing Data Structures 33

Sorted List

Theorem 6: Build-List guarantees monotonic List-reachability.
Proof sketch:

 Node w is list-reachable from node v if there is a sequence of
(u,u.r)-edges (resp. (u,u.l)-edges) that leads from v to w.

 However, we only need a weaker condition for the operations:
If an operation is able to get from v to w, then there must be a
sequence of (u,u.r)-edges (resp. (u,u.l)-edges) over time that
leads from v to w.

ADGA 2012 Self-stabilizing Data Structures 34

Line Metric

Theorem 6: Build-List guarantees monotonic List-reachability.
Proof sketch:

e Suppose that we are in a situation in which Op is to be sent to
y and Op is executed after Build-List(y) in x.

O O - & 0 8

« Theny is delegated to z and afterwards, Op is delegated to z
as well (or a closer node), so that Op is still executed after
Build-List(y) due to the FIFO rule on links.

* Inductive proof: Op eventually reaches vy.

ADGA 2012 Self-stabilizing Data Structures 35

Sorted List

Insert(v):
e Suppose that node u executes the request Insert(v).
o Then u simply calls u«Build-List(v).

« The Build-List protocol will then incorporate v in the right
position in the ordered list, i.e., Build-List stabilizes the
Insert operation.

@
D@00

ADGA 2012 Self-stabilizing Data Structures 36

Sorted List

Insert(v):
e Suppose that node u executes the request Insert(v).
o Then u simply calls u«Build-List(v).

« The Build-List protocol will then incorporate v in the right
position in the ordered list, i.e., Build-List stabilizes the

Insert operation.
Vv
\

ADGA 2012 Self-stabilizing Data Structures 37

Sorted List

Insert(v):
e Suppose that node u executes the request Insert(v).
o Then u simply calls u«Build-List(v).

« The Build-List protocol will then incorporate v in the right
position in the ordered list, i.e., Build-List stabilizes the
Insert operation while preserving monotonic list-
reachability.

@H@H@V’@

ADGA 2012 Self-stabilizing Data Structures 38

Sorted List

Delete(v): we assume that a node v can only delete
itself.

How to stabilize Delete(v) so that monotonic list-
reachability is preserved?

™
O O-E

 aleaving node v starts converting its explicit edges
Into special leave edges and adds a new edge that
connects its current predecessor and successor

ADGA 2012 Self-stabilizing Data Structures 39

Sorted List

Delete(v): we assume that a node v can only delete
itself.

How to stabilize Delete(v) so that monotonic list-

reachability is preserved?

* the leaving nodes continue the conversions till no
leaving node is connected to a non-leaving edge

ADGA 2012 Self-stabilizing Data Structures

40

Sorted List

Delete(v): we assume that a node v can only delete
itself.

How to stabilize Delete(v) so that monotonic list-

reachability is preserved?

e non-leaving nodes only use standard (non-leaving)
edges to forward requests

e |eaving nodes do not generate any further requests

ADGA 2012 Self-stabilizing Data Structures 41

Sorted List

Delete(v): we assume that a node v can only delete
itself.

How to stabilize Delete(v) so that monotonic list-

reachability is preserved?

 once a leaving node has no requests any more, it
leaves the system (and takes all of its edges with it)

ADGA 2012 Self-stabilizing Data Structures 42

Sorted List

Delete(v): we assume that a node v can only delete
itself.

How to stabilize Delete(v) so that monotonic list-

reachability is preserved?

 once a leaving node has no requests any more, it
leaves the system (and takes all of its edges with it)

ADGA 2012 Self-stabilizing Data Structures 43

Conclusion

Our hope: starting point to design efficient and robust distributed data
structures for large distributed systems.

Self-stabilizing protocols (simpler models & properties):
» Hypertrees [Dolev, Kat 2004]

» Sorted list [Onus, Richa, S 2007]

o SKkip lists [Clouser, Nesterenko, S 2008]

» Skip graphs [Jacob, Richa, S, Schmid, Taubig 2009]
» Delaunay graphs [Jacob, Ritscher, S. Schmid 2009]
* De Bruijn graphs [Richa, S, Stevens 2011]

e Chord network [Kniesburges, Koutsopoulos, S 2011]
* Universal [Berns, Ghosh, Pemmeraju 2011]

Very young research area. Runtime and churn not yet well-understood,
so much more work needed.

ADGA 2012 Self-stabilizing Data Structures 44

ADGA 2012

Questions?

Self-stabilizing Data Structures

45

