### Matching Distributed System Models to Reality

David Powell LAAS-CNRS

### From Abstraction to Reality



### **Distributed System Models**









### Guarantees

|        |                              | No                         | Soft                       | Firm                     |
|--------|------------------------------|----------------------------|----------------------------|--------------------------|
| Bounds | No<br>(NB model)             | unreliable<br>asynchronous | fair lossy<br>asynchronous | reliable<br>asynchronous |
|        | Unknown<br>(UB model)        | ?                          | ?                          | partially<br>synchronous |
|        | Known<br>(KB model)          | unreliable<br>synchronous  | eventually<br>synchronous  | reliable<br>synchronous  |
|        | [Le Lann <i>et al.</i> 1994] | DISC, Amsterdam            | , 4-7.10.2004              |                          |

### **Failure Models**

- Time domain
  - none
  - stopping
  - omission
  - timing (KB model only)
    - early
    - Iate
  - arbitrary (or undefined)

process

crash

model

- Value domain
  - 🗕 none
    - non-code (signaled)
    - arbitrary (non-signaled)
      - → data
      - ∽ meta-data
        - data sender
        - data originator
        - data creation time
        - • •

### **Failure Models**

- Time domain
  - none
  - stopping
  - omission
  - timing (KB model only)
    - early
    - Iate
    - arbitrary (or undefined)

arbitrary

failure

model

- Value domain
  - none
  - non-code (signaled)
  - arbitrary (non-signaled)
    - → data

. . .

- → meta-data
  - data sender
  - data originator
  - data creation time

### **Failure Models**

- Time domain
  - none
  - stopping
  - omission
  - timing (KB model only)
    - early
    - Iate
  - arbitrary (or undefined)

model

- Value domain
  - none



### **Example Systems**

- GUARDS (1996-1999)
  - embedded system for space, railways, nuclear propulsion
  - permanent & transient physical faults, design faults
- Delta-4 (1986-1991)
  - factory automation, business systems
  - permanent & transient physical faults, intrusions

- MAFTIA (2000-2002)
  - Internet security
  - intrusions, permanent physical faults
- PADRE (1994-1997)
  - railway automation
  - permanent & transient physical faults

### GUARDS



- embedded system for space, railways, nuclear propulsion
- permanent & transient physical faults, design faults

[Powell et al. 1999]

#### Process failure model

- - → self-checking

#### **Timing model**

#### **FT Services**

- Clock synchronization
- Interactive consistency
- Active replication
   ① with or
  - $\ensuremath{\textcircled{}}$  without voting
- ...

### Delta-4



- factory automation, business systems
- permanent & transient physical faults, intrusions

[Powell 1994]

#### Process failure model (hybrid) Hosts: ① Arbitrary ② Crash ♀ self-checking

NACs: Crash → self-checking

#### Timing model

- Reliable synchronous
- → bounded omission faults
- → bounded channel faults

#### **FT Services**

- Atomic multicast
- Active replication ① with or
  - 2 without voting
- 2 Passive replication
- 2 Semi-active replication
- ...

### MAFTIA

[Verissimo et al. 2004]



### PADRE



[Essamé et al. 1999]

#### **Process failure model**

- Crash
  - → self-checking (coded processor technique)

#### Timing models Safety

- Base unreliable synchronous
- Derived 'safe synchronous' (fail-aware datagram)

#### Availability

• Eventually synchronous

#### **FT Service**

- Fail-safe duplex redundancy

- railway automation
- permanent & transient physical faults

### **Assumption Coverage**

- Measure of confidence in an assumption
- Likelihood that assumption holds true in given universe (sample set)
- Sets upper bound on dependability

$$\Pr\left\{\begin{array}{c} system & real \\ property & system \end{array}\right\} = \Pr\left\{\begin{array}{c} system \\ property \\ property \\ \end{array}\right\} \times \Pr\left\{\begin{array}{c} real \\ system \\ system \\ system \\ system \\ \end{array}\right\} + \varepsilon$$

$$\operatorname{likelihood\ that\ system\ property \\ holds\ under\ assumption(s)\ X \\ \end{array}$$

$$\operatorname{coverage\ of}_{assumption(s)\ X}$$

$$\hookrightarrow P_X$$

[Powell 1992]

### **Assumption Ranking**

■  $\checkmark$  General =  $\checkmark$  Permissive =  $\checkmark$  Coverage ■ If  $X \Rightarrow Y$  (equivalently  $Y \supseteq X$ ), then  $P_Y \ge P_X$ 



[Powell 1992]

### **Assumption Ranking**

■  $\checkmark$  General =  $\checkmark$  Permissive =  $\checkmark$  Coverage ■ If  $X \Rightarrow Y$  (equivalently  $Y \supseteq X$ ), then  $P_Y \ge P_X$ 



[Powell 1992]

### **Assumption Ranking**

# ✓ General = ✓ Permissive = ✓ Coverage If X ⇒ Y (equivalently Y ⊇ X), then P<sub>Y</sub> ≥ P<sub>X</sub>



### **Alternative Assumptions**

- If  $X = A \cup B$  then  $P_x = P_A + P_B P_{A \cap B}$
- Alternate base models  $\Rightarrow P_x \ge \max(P_A; P_B)$



### Linking to Dependability Assessment

Define 
$$E^{t} = \{E(\tau), \tau \in [0, t]\}$$
 and  $R_{E}(t) = \Pr\{E^{t}\}$ 

With *C* the (composite) system property defining "correct" then  $R_c(t)$  is a measure of system reliability

If  $X = \bigcap_{i} H_{i}$  denotes the system model assumed to prove C

we can write :  $R_{C}(t) \le R_{X}(t) \longrightarrow$  "assumption reliability" [Latronico *et al.* 2004]

Example:

- $H_0$  finite set of *n* processes
- $H_1$  processes fail only by crashing
- $H_2$  at most *k* processes fail
- $H_3$  all message delays <  $\Delta$

### **Towards Dependability Assessment**

- $H_0$  finite set of *n* processes
- *H*<sub>1</sub> processes fail by crashing
- $H_2$  at most k processes fail
- $H_3$  all message delays <  $\Delta$

$$\begin{aligned} \mathcal{R}_{X}(t) &= \Pr\left\{H_{0}^{t} \cap H_{1}^{t} \cap H_{2}^{t} \cap H_{3}^{t}\right\} \\ &= \Pr\left\{H_{0}^{t} \cap H_{1}^{t} \cap H_{2}^{t}\right\} \cdot \Pr\left\{H_{3}^{t}\right\} \\ & \text{(assuming stochastic independence of } H_{3}^{t}\text{)} \\ &= \Pr\left\{H_{0}^{t}\right\} \cdot \Pr\left\{H_{1}^{t} \cap H_{2}^{t}\middle| H_{0}^{t}\right\} \cdot \Pr\left\{H_{3}^{t}\right\} \\ & \swarrow \\ & \downarrow \\ & \downarrow \\ & \text{system state} \\ & \text{transition model} \\ & \left[\left(1-q\right)\mathcal{F}(\Delta)\right)\right]^{M(t)} \end{aligned}$$

### Impact of Assumption Coverage

Consider *n*-unit system tolerating *k* faults

- $H_1$  processes fail by crashing
- $H_2$  at most k processes fail

|             | Crash       | Arbitrary                           |  |
|-------------|-------------|-------------------------------------|--|
|             | p<1 n≥k+1   | <i>p</i> =1 <i>n</i> ≥3 <i>k</i> +1 |  |
| <i>k</i> =0 | <i>n</i> =1 | <i>n</i> =1                         |  |
| <i>k</i> =1 | n=2         | n=4                                 |  |
| <i>k</i> =2 | <i>n</i> =3 | n=7                                 |  |



### Impact of Assumption Coverage

[Powell 1992]



### **Coverage in System Engineering**



### **Coverage in System Engineering**



## Conclusions (1/3)

- Valid model has compatible sub-models
- Good model has permissive sub-models
- Best model depends on:
  - real system in real environment
  - required application-level properties
- Validity of model vs. reality
  - depends on validity of root assumptions
  - captured by assumption coverage

## Conclusions (2/3)

- Assumption coverage ⇒ upper bounds on stochastic measures of dependability
  - ranges of parameters allowing objectives to be met by given problem/solution pair
  - optimum solution for given problem and range of parameters
- Permissive models
  - higher assumption coverage
  - not necessarily higher dependability

## Conclusions (3/3)

- Need:
  - explicit & clear statements of root assumptions
  - method for linking design to assessment through coverage of root assumptions
  - extended distributed system models suitable for current and future real systems (mobility...)

### References

- [Essamé et al. 1999] D. Essamé, J. Arlat and D. Powell, "PADRE: a Protocol for Asymmetric Duplex REdundancy", in Dependable Computing for Critical Applications (DCCA-7), (San Jose, CA, USA), January 1999).
- [Latronico et al. 2004] E. Latronico, P. Miner and P. Koopman, "Quantifying the Reliability of Proven SPIDER Group Membership Service Guarantees", in Dependable Systems and Networks (DSN 2004), (Florence, Italy), pp.275-84, 2004.
- [Le Lann et al. 1994] G. Le Lann, P. Minet and D. Powell, "Distributed Systems", in *Fault-Tolerant Computing*, Arago, 15, pp.55-71, O.F.T.A. - Masson, Paris, France, 1994 (in French).
- [Le Lann 2004] G. Le Lann, Proof-Based System Engineering for Computer-Based Systems: A Guide for Requirement Capture, version 4.2, INRIA Report, 30 August 2004.
- [Mostefaoui et al. 2004] A. Mostefaoui, D. Powell and M. Raynal, "A Hybrid Approach for Building Eventually Accurate Failure Detectors", in *Pacific Rim Dependable Computing Conference (PRDC'04)*, (Tahiti, French Polynesia), pp.57-65, 2004.

- [Powell 1992] D. Powell, "Failure Mode Assumptions and Assumption Coverage", in Fault-Tolerant Computing (FTCS-22), (Boston, MA, USA), pp.386-95, 1992.
- [Powell 1994] D. Powell, "Distributed Fault-Tolerance — Lessons from Delta-4", *IEEE Micro*, 14 (1), pp.36-47, February 1994.
- [Powell et al. 1999] D. Powell, J. Arlat, L. Beus-Dukic, A. Bondavalli, P. Coppola, A. Fantechi, E. Jenn, C. Rabéjac and A. Wellings, "GUARDS: A Generic Upgradable Architecture for Real-time Dependable Systems", *IEEE Transactions on Parallel and Distributed Systems*, 10 (6), pp.580-99, June 1999.
- [Verissimo et al. 2004] P. Verissimo, N. Neves, C. Cachin, J. Poritz, D. Powell, Y. Deswarte, R. Stroud and I. Welch, Intrusion-Tolerant Middleware: the MAFTIA Approach, LAAS-CNRS, Report 04416, July 2004.