Distributed Computing on the (Fruit) Fly

Yuval Emek
Technion - Israel Institute of Technology

The 1st Workshop on Biological Distributed Algorithms Jerusalem, October 2013

Synopsis

Distributed network algorithms

Synopsis

Distributed network algorithms

Synopsis

Distributed network algorithms

Mission: theory of distributed computing in biological cellular networks

Motivation

Selection of sensory organ precurser (SOP) cells = solving MIS [Afek, Alon, Barad, Hornstein, Barkai, Bar-Joseph 11]

(1) Cells as computing devices

(2) Abstract distributed computing models

(3) Networked finite state machines
(4) Results

- MIS algorithm
(5) Conclusions

Local computation

Local computation

Nucleus: analogous to central processing unit

Local computation

Nucleus: analogous to central processing unit

- Code $=$ DNA (strings of nucleotides)

Local computation

Nucleus: analogous to central processing unit

- Code $=$ DNA (strings of nucleotides)
- Instructions = genes (DNA substrings)

Local computation

Nucleus: analogous to central processing unit

- Code $=$ DNA (strings of nucleotides)
- Instructions = genes (DNA substrings)
- Execution = gene expression
- transcribed to RNA molecules

Local computation

Nucleus: analogous to central processing unit

- Code $=$ DNA (strings of nucleotides)
- Instructions = genes (DNA substrings)
- Execution = gene expression
- transcribed to RNA molecules
- Main question:
 which genes are currently expressed?

Local computation

Nucleus: analogous to central processing unit

- Code $=$ DNA (strings of nucleotides)
- Instructions = genes (DNA substrings)
- Execution = gene expression
- transcribed to RNA molecules
- Main question:
 which genes are currently expressed?
- Analogous to CPU's current state

Communication

Communication

Juxtacrine (direct contact): respects network's topology

Communication

Juxtacrine (direct contact): respects network's topology
Delivery of message m from cell x to cell y

Communication

Juxtacrine (direct contact): respects network's topology
Delivery of message m from cell x to cell y
(1) x produces molecule m

Communication

Juxtacrine (direct contact): respects network's topology
Delivery of message m from cell x to cell y
(1) x produces molecule m
(2) m crosses from x to y

Communication

Juxtacrine (direct contact): respects network's topology
Delivery of message m from cell x to cell y
(1) x produces molecule m
(2) m crosses from x to y

- gap junction connecting two cytoplasms

Communication

Juxtacrine (direct contact): respects network's topology
Delivery of message m from cell x to cell y
(1) x produces molecule m
(2) m crosses from x to y

- gap junction connecting two cytoplasms
- binds to crossmembrane receptor

Communication

Juxtacrine (direct contact): respects network's topology
Delivery of message m from cell x to cell y
(1) x produces molecule m
(2) m crosses from x to y

- gap junction connecting two cytoplasms
- binds to crossmembrane receptor
(3) Triggers a signaling cascade inside y

Communication

Juxtacrine (direct contact): respects network's topology
Delivery of message m from cell x to cell y
(1) x produces molecule m
(2) m crosses from x to y

- gap junction connecting two cytoplasms
- binds to crossmembrane receptor
(3) Triggers a signaling cascade inside y
(9) Modifies concentration levels in nucleus

Communication

Juxtacrine (direct contact): respects network's topology
Delivery of message m from cell x to cell y
(1) x produces molecule m
(2) m crosses from x to y

- gap junction connecting two cytoplasms
- binds to crossmembrane receptor
(3) Triggers a signaling cascade inside y

(9) Modifies concentration levels in nucleus
(0) Affects y 's gene expression

Communication

Juxtacrine (direct contact): respects network's topology
Delivery of message m from cell x to cell y
(1) x produces molecule m
(2) m crosses from x to y

- gap junction connecting two cytoplasms
- binds to crossmembrane receptor
(3) Triggers a signaling cascade inside y

(9) Modifies concentration levels in nucleus
(- Affects y 's gene expression
- Gap junction/receptor $=$ port

Communication

Juxtacrine (direct contact): respects network's topology
Delivery of message m from cell x to cell y
(1) x produces molecule m
(2) m crosses from x to y

- gap junction connecting two cytoplasms
- binds to crossmembrane receptor
(3) Triggers a signaling cascade inside y

(3) Modifies concentration levels in nucleus
(3) Affects y 's gene expression
- Gap junction/receptor = port
- No sense of direction
- all neighbors look the same

(1) Cells as computing devices
(2) Abstract distributed computing models
(3) Networked finite state machines

4. Results

- MIS algorithm
(5) Conclusions

Message passing

Message passing

Nodes act locally (don't know global topology)

Message passing

Nodes act locally (don't know global topology)

In each step, node v :

Message passing

Nodes act locally (don't know global topology)

In each step, node v :

- sends messages to $N(v)$

Message passing

Nodes act locally (don't know global topology)

In each step, node v :

- sends messages to $N(v)$
- receives messages from $N(v)$

Message passing

Nodes act locally (don't know global topology)

In each step, node v :

- sends messages to $N(v)$
- receives messages from $N(v)$
- performs local computation

Message passing

Nodes act locally (don't know global topology)

In each step, node v :

- sends messages to $N(v)$
- receives messages from $N(v)$
- performs local computation

Communication too strong

Message passing

Nodes act locally (don't know global topology)

In each step, node v :

- sends messages to $N(v)$
- receives messages from $N(v)$
- performs local computation

Communication too strong

- independent messages to/from each neighbor

Message passing

Nodes act locally (don't know global topology)

In each step, node v :

- sends messages to $N(v)$
- receives messages from $N(v)$
- performs local computation

Communication too strong

- independent messages to/from each neighbor

Message passing

Nodes act locally (don't know global topology)

In each step, node v :

- sends messages to $N(v)$
- receives messages from $N(v)$
- performs local computation

Communication too strong

- independent messages to/from each neighbor
- \# message types grows with n

The beeping model

Introduced in [Cornejo, Kuhn 10]

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages $=$ beeps (no information)

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages $=$ beeps (no information)

Node distinguishes 0 and ≥ 1 beeps

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages $=$ beeps (no information)

Node distinguishes 0 and ≥ 1 beeps

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages $=$ beeps (no information)
Node distinguishes 0 and ≥ 1 beeps

Local computation too strong

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages $=$ beeps (no information)
Node distinguishes 0 and ≥ 1 beeps

Local computation too strong

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages $=$ beeps (no information)

Node distinguishes 0 and ≥ 1 beeps

Local computation too strong

Finite state machines (a.k.a. automata)

Finite state machines (a.k.a. automata)

- A fixed collection of states

Finite state machines (a.k.a. automata)

- A fixed collection of states
- A fixed collection of input signals (a.k.a. alphabet)

Finite state machines (a.k.a. automata)

- A fixed collection of states
- A fixed collection of input signals (a.k.a. alphabet)
- state $(t+1) \longleftarrow \operatorname{state}(t)$, signal (t)

Finite state machines (a.k.a. automata)

- A fixed collection of states
- A fixed collection of input signals (a.k.a. alphabet)
- $\operatorname{state}(t+1) \longleftarrow \operatorname{state}(t)$, signal (t)
- determined by transition function

Finite state machines (a.k.a. automata)

- A fixed collection of states
- A fixed collection of input signals (a.k.a. alphabet)
- state $(t+1) \longleftarrow$ state (t), signal (t)
- determined by transition function
- Computational power

Finite state machines (a.k.a. automata)

- A fixed collection of states
- A fixed collection of input signals (a.k.a. alphabet)
- $\operatorname{state}(t+1) \longleftarrow \operatorname{state}(t)$, signal (t)
- determined by transition function
- Computational power

Cell enzymes "programmed" to implement an FSM [Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Finite state machines (a.k.a. automata)

- A fixed collection of states
- A fixed collection of input signals (a.k.a. alphabet)
- $\operatorname{state}(t+1) \longleftarrow \operatorname{state}(t)$, signal (t)
- determined by transition function
- Computational power

Cell enzymes "programmed" to implement an FSM [Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Cellular automata

Cellular automata

Infinite grid of FSMs

Cellular automata

Infinite grid of FSMs
$q_{x, y}(t+1) \longleftarrow q_{x, y}(t),\left\{q_{x^{\prime}, y^{\prime}}(t):\right.$ grid neighbors $\left.\left(x^{\prime}, y^{\prime}\right)\right\}$

Cellular automata

Infinite grid of FSMs
$q_{x, y}(t+1) \longleftarrow q_{x, y}(t),\left\{q_{x^{\prime}, y^{\prime}}(t):\right.$ grid neighbors $\left.\left(x^{\prime}, y^{\prime}\right)\right\}$

Typical question: How an initial (finite) configuration evolves?

Cellular automata

Infinite grid of FSMs
$q_{x, y}(t+1) \longleftarrow q_{x, y}(t),\left\{q_{x^{\prime}, y^{\prime}}(t):\right.$ grid neighbors $\left.\left(x^{\prime}, y^{\prime}\right)\right\}$

Typical question: How an initial (finite) configuration evolves?

Invented by

(crystal growth, self-replicating systems)

Cellular automata

Infinite grid of FSMs
$q_{x, y}(t+1) \longleftarrow q_{x, y}(t),\left\{q_{x^{\prime}, y^{\prime}}(t):\right.$ grid neighbors $\left.\left(x^{\prime}, y^{\prime}\right)\right\}$

Typical question: How an initial (finite) configuration evolves?

Invented by

(crystal growth, self-replicating systems)

Game of life

Cellular automata

Infinite grid of FSMs
$q_{x, y}(t+1) \longleftarrow q_{x, y}(t),\left\{q_{x^{\prime}, y^{\prime}}(t):\right.$ grid neighbors $\left.\left(x^{\prime}, y^{\prime}\right)\right\}$

Typical question: How an initial (finite) configuration evolves?

Invented by

(crystal growth, self-replicating systems)

Cellular automata

Infinite grid of FSMs
$q_{x, y}(t+1) \longleftarrow q_{x, y}(t),\left\{q_{x^{\prime}, y^{\prime}}(t):\right.$ grid neighbors $\left.\left(x^{\prime}, y^{\prime}\right)\right\}$

Typical question: How an initial (finite) configuration evolves?

Invented by

(crystal growth, self-replicating systems)

Biological processes

Cellular automata

Infinite grid of FSMs
$q_{x, y}(t+1) \longleftarrow q_{x, y}(t),\left\{q_{x^{\prime}, y^{\prime}}(t):\right.$ grid neighbors $\left.\left(x^{\prime}, y^{\prime}\right)\right\}$

Typical question: How an initial (finite) configuration evolves?

Invented by

(crystal growth, self-replicating systems)

Digital physics
Biological processes

Highly regular topology
(1) Cells as computing devices
(2) Abstract distributed computing models
(3) Networked finite state machines
4. Results

- MIS algorithm
(5) Conclusions

nFSM

- Every node is a FSM

nFSM

- Every node is a FSM
- Communication based on transmissions: same message delivered to all neighbors

nFSM

- Every node is a FSM
- Communication based on transmissions: same message delivered to all neighbors
- Message is a letter in a constant-size communication alphabet Σ

nFSM

- Every node is a FSM
- Communication based on transmissions:
same message delivered to all neighbors
- Message is a letter in a constant-size communication alphabet Σ
- Node u has a port corresponding to each $v \in N(u)$
- Stores the last message $\sigma \in \Sigma$ delivered from v

nFSM

- Every node is a FSM
- Communication based on transmissions:
same message delivered to all neighbors
- Message is a letter in a constant-size communication alphabet Σ
- Node u has a port corresponding to each $v \in N(u)$
- Stores the last message $\sigma \in \Sigma$ delivered from v
- In each step, u decides on next state and which letter to transmit based on its current state and letters currently stored in its ports

nFSM

- Every node is a FSM
- Communication based on transmissions:
same message delivered to all neighbors
- Message is a letter in a constant-size communication alphabet Σ
- Node u has a port corresponding to each $v \in N(u)$
- Stores the last message $\sigma \in \Sigma$ delivered from v
- In each step, u decides on next state and which letter to transmit based on its current state and letters currently stored in its ports
- Problem:
- \# possible signals $=\#$ port configurations $=|\Sigma|^{\operatorname{deg}(u)}$

nFSM

- Every node is a FSM
- Communication based on transmissions:
same message delivered to all neighbors
- Message is a letter in a constant-size communication alphabet Σ
- Node u has a port corresponding to each $v \in N(u)$
- Stores the last message $\sigma \in \Sigma$ delivered from v
- In each step, u decides on next state and which letter to transmit based on its current state and letters currently stored in its ports
- Problem:
- \# possible signals $=\#$ port configurations $=|\Sigma|^{\operatorname{deg}(u)}$
- Should be fixed in a FSM!

The one-two-many principle

- Node u cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)

The one-two-many principle

- Node u cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- \# possible signals $=\binom{\operatorname{deg}(u)+|\Sigma|-1}{|\Sigma|-1}=\operatorname{poly}(\operatorname{deg}(u))$

The one-two-many principle

- Node u cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- \# possible signals $=\binom{\operatorname{deg}(u)+|\Sigma|-1}{|\Sigma|-1}=\operatorname{poly}(\operatorname{deg}(u))$
- π_{σ} calculated by the one-two-many principle:

The one-two-many principle

- Node u cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- \# possible signals $=\binom{\operatorname{deg}(u)+|\Sigma|-1}{|\Sigma|-1}=\operatorname{poly}(\operatorname{deg}(u))$
- π_{σ} calculated by the one-two-many principle:
isolated cultures developed counting systems that don't go beyond 2

Warlpiri (Australia)

Piraha (the Amazon)

The one-two-many principle

- Node u cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- \# possible signals $=\binom{\operatorname{deg}(u)+|\Sigma|-1}{|\Sigma|-1}=\operatorname{poly}(\operatorname{deg}(u))$
- π_{σ} calculated by the one-two-many principle:
isolated cultures developed counting systems that don't go beyond 2

Warlpiri (Australia)

Piraha (the Amazon)

- Constant bounding parameter $b \in \mathbb{Z}_{>0}$ (property of the algorithm)

The one-two-many principle

- Node u cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- \# possible signals $=\binom{\operatorname{deg}(u)+|\Sigma|-1}{|\Sigma|-1}=\operatorname{poly}(\operatorname{deg}(u))$
- π_{σ} calculated by the one-two-many principle:
isolated cultures developed counting systems that don't go beyond 2

Warlpiri (Australia)

Piraha (the Amazon)

- Constant bounding parameter $b \in \mathbb{Z}_{>0}$ (property of the algorithm)
- u can distinguish between $\pi_{\sigma}=0,1, \ldots, b-1$, or $\pi_{\sigma} \geq b$

The one-two-many principle

- Node u cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- \# possible signals $=\binom{\operatorname{deg}(u)+|\Sigma|-1}{|\Sigma|-1}=\operatorname{poly}(\operatorname{deg}(u))$
- π_{σ} calculated by the one-two-many principle:
isolated cultures developed counting systems that don't go beyond 2

Warlpiri (Australia)

Piraha (the Amazon)

- Constant bounding parameter $b \in \mathbb{Z}_{>0}$ (property of the algorithm)
- u can distinguish between $\pi_{\sigma}=0,1, \ldots, b-1$, or $\pi_{\sigma} \geq b$
- $\#$ possible signals $=(b+1)^{|\Sigma|}$

The one-two-many principle

- Node u cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- \# possible signals $=\binom{\operatorname{deg}(u)+|\Sigma|-1}{|\Sigma|-1}=\operatorname{poly}(\operatorname{deg}(u))$
- π_{σ} calculated by the one-two-many principle:
isolated cultures developed counting systems that don't go beyond 2

Warlpiri (Australia)

Piraha (the Amazon)

- Constant bounding parameter $b \in \mathbb{Z}_{>0}$ (property of the algorithm)
- u can distinguish between $\pi_{\sigma}=0,1, \ldots, b-1$, or $\pi_{\sigma} \geq b$
- $\#$ possible signals $=(b+1)^{|\Sigma|}$
- FSM's transition function: $\delta: Q \times\{0,1, \ldots, b\}^{\Sigma} \rightarrow Q \times \Sigma$

The one-two-many principle

- Node u cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- \# possible signals $=\binom{\operatorname{deg}(u)+|\Sigma|-1}{|\Sigma|-1}=\operatorname{poly}(\operatorname{deg}(u))$
- π_{σ} calculated by the one-two-many principle:
isolated cultures developed counting systems that don't go beyond 2

Warlpiri (Australia)

Piraha (the Amazon)

- Constant bounding parameter $b \in \mathbb{Z}_{>0}$ (property of the algorithm)
- u can distinguish between $\pi_{\sigma}=0,1, \ldots, b-1$, or $\pi_{\sigma} \geq b$
- $\#$ possible signals $=(b+1)^{|\Sigma|}$
- FSM's transition function: $\delta: Q \times\{0,1, \ldots, b\}^{\Sigma} \rightarrow 2^{Q \times \Sigma}$

Crux of the model

Crux of the model

- Applicable to arbitrary network topologies

Crux of the model

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol

Crux of the model

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including $\operatorname{deg}(u)$):

Crux of the model

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including $\operatorname{deg}(u)$):
- number of states

Crux of the model

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including $\operatorname{deg}(u)$):
- number of states
- size of alphabet Σ

Crux of the model

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including $\operatorname{deg}(u)$):
- number of states
- size of alphabet Σ
- bounding parameter b

Crux of the model

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including $\operatorname{deg}(u)$):
- number of states
- size of alphabet Σ
- bounding parameter b
- size of the description of $\delta: Q \times\{0,1, \ldots, b\}^{|\Sigma|} \rightarrow 2^{Q \times \Sigma}$

Crux of the model

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including $\operatorname{deg}(u)$):
- number of states
- size of alphabet Σ
- bounding parameter b
- size of the description of $\delta: Q \times\{0,1, \ldots, b\}^{|\Sigma|} \rightarrow 2^{Q \times \Sigma}$
- A genuine FSM!

Crux of the model

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including $\operatorname{deg}(u)$):
- number of states
- size of alphabet Σ
- bounding parameter b
- size of the description of $\delta: Q \times\{0,1, \ldots, b\}^{|\Sigma|} \rightarrow 2^{Q \times \Sigma}$
- A genuine FSM!
- Fully asynchronous environment

Crux of the model

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including $\operatorname{deg}(u)$):
- number of states
- size of alphabet Σ
- bounding parameter b
- size of the description of $\delta: Q \times\{0,1, \ldots, b\}^{|\Sigma|} \rightarrow 2^{Q \times \Sigma}$
- A genuine FSM!
- Fully asynchronous environment
- The biological angle:

Crux of the model

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including $\operatorname{deg}(u)$):
- number of states
- size of alphabet Σ
- bounding parameter b
- size of the description of $\delta: Q \times\{0,1, \ldots, b\}^{|\Sigma|} \rightarrow 2^{Q \times \Sigma}$
- A genuine FSM!
- Fully asynchronous environment
- The biological angle:
- one-two-many counting = discrete analogue for detecting different concentration levels
(1) Cells as computing devices
(2) Abstract distributed computing models

3 Networked finite state machines
(4) Results

- MIS algorithm
(5) Conclusions

Performance measure

Run-time:

- \# time units until all nodes terminate

Performance measure

Run-time:

- \# time units until all nodes terminate
- Efficient algorithm $=\log ^{O(1)} n$ run-time [Linial 92]

Performance measure

Run-time:

- \# time units until all nodes terminate
- Efficient algorithm $=\log { }^{O(1)} n$ run-time [Linial 92]
- Las Vegas algorithms, irrevocable output

Performance measure

Run-time:

- \# time units until all nodes terminate
- Efficient algorithm $=\log { }^{O(1)} n$ run-time [Linial 92]
- Las Vegas algorithms, irrevocable output
- Run-time bounds hold in expectation and w.h.p.

Efficient algorithms

Efficient algorithms

- Maximal Independent Set in arbitrary graphs
- run-time $=O\left(\log ^{2} n\right)$

Efficient algorithms

- Maximal Independent Set in arbitrary graphs
- run-time $=O\left(\log ^{2} n\right)$
- Maximal 2-hop Independent Set in arbitrary graphs
- run-time $=O\left(\log ^{2} n\right)$

Efficient algorithms

- Maximal Independent Set in arbitrary graphs
- run-time $=O\left(\log ^{2} n\right)$
- Maximal 2-hop Independent Set in arbitrary graphs
- run-time $=O\left(\log ^{2} n\right)$
- Coloring bounded degree graphs with $\Delta+1$ colors
- run-time $=O(\log n)$

Efficient algorithms

- Maximal Independent Set in arbitrary graphs
- run-time $=O\left(\log ^{2} n\right)$
- Maximal 2-hop Independent Set in arbitrary graphs
- run-time $=O\left(\log ^{2} n\right)$
- Coloring bounded degree graphs with $\Delta+1$ colors
- run-time $=O(\log n)$
- 2-hop Coloring bounded degree graphs with $\Delta^{2}+1$ colors
- run-time $=O(\log n)$

Efficient algorithms

- Maximal Independent Set in arbitrary graphs
- run-time $=O\left(\log ^{2} n\right)$
- Maximal 2-hop Independent Set in arbitrary graphs
- run-time $=O\left(\log ^{2} n\right)$
- Coloring bounded degree graphs with $\Delta+1$ colors
- run-time $=O(\log n)$
- 2-hop Coloring bounded degree graphs with $\Delta^{2}+1$ colors
- run-time $=O(\log n)$
- Coloring arbitrary trees with 3 colors
- run-time $=O(\log n)$

Efficient algorithms

- Maximal Independent Set in arbitrary graphs
- run-time $=O\left(\log ^{2} n\right)$
- Maximal 2-hop Independent Set in arbitrary graphs
- run-time $=O\left(\log ^{2} n\right)$
- Coloring bounded degree graphs with $\Delta+1$ colors
- run-time $=O(\log n)$
- 2-hop Coloring bounded degree graphs with $\Delta^{2}+1$ colors
- run-time $=O(\log n)$
- Coloring arbitrary trees with 3 colors
- run-time $=O(\log n)$
- Maximal Matching in arbitrary graphs (small model modification)
- run-time $=O\left(\log ^{2} n\right)$

Additional general results

Theorem (Synchronizer)

Every nFSM algorithm designed to operate in a synchronous environment can be simulated in an asynchronous environment with a constant multiplicative run-time overhead.

Theorem (Computability)

In terms of their computational power, nFSM algorithms are (almost) equivalent to randomized linear-space Turing machines.
(1) Cells as computing devices
(2) Abstract distributed computing models
(3) Networked finite state machines
(4) Results

- MIS algorithm
(5) Conclusions

The MIS problem

The MIS problem

Independent set: set of nodes with no neighbors

The MIS problem

Independent set: set of nodes with no neighbors
maximal independent set (MIS): cannot be extended

The MIS problem

Independent set: set of nodes with no neighbors
maximal independent set (MIS): cannot be extended

The MIS problem: input: (arbitrary) network output: MIS

MIS under nFSM - difficulties

MIS under nFSM — difficulties

- Existing MIS algorithms rely on grouping steps into phases: u competes with $N(u)$ over joining the MIS

MIS under nFSM - difficulties

- Existing MIS algorithms rely on grouping steps into phases: u competes with $N(u)$ over joining the MIS
- Require either
- calculations with super-constant variables
- independent communication with each neighbor
- messages of logarithmic size

MIS under nFSM — difficulties

- Existing MIS algorithms rely on grouping steps into phases: u competes with $N(u)$ over joining the MIS
- Require either
- calculations with super-constant variables
- independent communication with each neighbor
- messages of logarithmic size
- Idea: transmit $O(1)$ bits per step
- logarithmically long phases

MIS under nFSM — difficulties

- Existing MIS algorithms rely on grouping steps into phases: u competes with $N(u)$ over joining the MIS
- Require either
- calculations with super-constant variables
- independent communication with each neighbor
- messages of logarithmic size
- Idea: transmit $O(1)$ bits per step
- logarithmically long phases
- Problem:
- u must count the steps in a phase (deciding when it ends)

MIS under nFSM — difficulties

- Existing MIS algorithms rely on grouping steps into phases: u competes with $N(u)$ over joining the MIS
- Require either
- calculations with super-constant variables
- independent communication with each neighbor
- messages of logarithmic size
- Idea: transmit $O(1)$ bits per step
- logarithmically long phases
- Problem:
- u must count the steps in a phase (deciding when it ends)
- phases must be aligned to guarantee fair competition

MIS under nFSM — difficulties

- Existing MIS algorithms rely on grouping steps into phases: u competes with $N(u)$ over joining the MIS
- Require either
- calculations with super-constant variables
- independent communication with each neighbor
- messages of logarithmic size
- Idea: transmit $O(1)$ bits per step
- logarithmically long phases
- Problem:
- u must count the steps in a phase (deciding when it ends)
- phases must be aligned to guarantee fair competition
- How can we decide if u joins MIS without long aligned phases?

MIS under nFSM - solution

MIS under nFSM - solution

- Relax requirement that phase is aligned and of predetermined length

MIS under nFSM — solution

- Relax requirement that phase is aligned and of predetermined length
- Tournament:
- length determined probabilistically
- "softly" aligned
- maintained under nFSM

MIS under nFSM — solution

- Relax requirement that phase is aligned and of predetermined length
- Tournament:
- length determined probabilistically
- "softly" aligned
- maintained under nFSM
- Prove:
(1) Amortized length of a tournament is $O(\log n)$ w.h.p.

MIS under nFSM - solution

- Relax requirement that phase is aligned and of predetermined length
- Tournament:
- length determined probabilistically
- "softly" aligned
- maintained under nFSM
- Prove:
(1) Amortized length of a tournament is $O(\log n)$ w.h.p.
(2) Guarantee fair competition \Longrightarrow const fraction of the edges is removed with const probability \Longrightarrow $O(\log n)$ tournaments w.h.p.
(1) Cells as computing devices
(2) Abstract distributed computing models

3 Networked finite state machines
(4) Results

- MIS algorithm
(5) Conclusions

Summary

- Abstract model for network of FSMs

Summary

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms

Summary

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms
- Suitable to biological cellular networks
- Local computation, communication, asynchrony

Summary

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms
- Suitable to biological cellular networks
- Local computation, communication, asynchrony
- Also networks of man made nano-devices

Summary

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms
- Suitable to biological cellular networks
- Local computation, communication, asynchrony
- Also networks of man made nano-devices
- Another model: population protocols (pairwise interactions, eventual correctness)

Summary

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms
- Suitable to biological cellular networks
- Local computation, communication, asynchrony
- Also networks of man made nano-devices
- Another model: population protocols (pairwise interactions, eventual correctness)
- Reasonable constants (MIS: $|Q|=|\Sigma|=7, b=1$)

Summary

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms
- Suitable to biological cellular networks
- Local computation, communication, asynchrony
- Also networks of man made nano-devices
- Another model: population protocols (pairwise interactions, eventual correctness)
- Reasonable constants (MIS: $|Q|=|\Sigma|=7, b=1$)
- Open problem: dynamic environment

Summary

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms
- Suitable to biological cellular networks
- Local computation, communication, asynchrony
- Also networks of man made nano-devices
- Another model: population protocols (pairwise interactions, eventual correctness)
- Reasonable constants (MIS: $|Q|=|\Sigma|=7, b=1$)
- Open problem: dynamic environment
- Joint research project with Jara Uitto and Roger Wattenhofer

Summary

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms
- Suitable to biological cellular networks
- Local computation, communication, asynchrony
- Also networks of man made nano-devices
- Another model: population protocols (pairwise interactions, eventual correctness)
- Reasonable constants (MIS: $|Q|=|\Sigma|=7, b=1$)
- Open problem: dynamic environment
- Joint research project with Jara Uitto and Roger Wattenhofer
תודה רבה

