Distributed Computing on the (Fruit) Fly

Yuval Emek

Technion - Israel Institute of Technology

The 1st Workshop on Biological Distributed Algorithms Jerusalem, October 2013

Synopsis

Distributed network algorithms

Synopsis

Distributed network algorithms

Synopsis

Distributed network algorithms

Mission: theory of distributed computing in biological cellular networks

Motivation

Selection of sensory organ precurser (SOP) cells = solving MIS [Afek, Alon, Barad, Hornstein, Barkai, Bar-Joseph 11]

Cells as computing devices

- 2 Abstract distributed computing models
- 3 Networked finite state machines
- 4 Results
 - MIS algorithm

Nucleus: analogous to central processing unit

• Code = DNA (strings of nucleotides)

- Code = DNA (strings of nucleotides)
- Instructions = genes (DNA substrings)

- Code = DNA (strings of nucleotides)
- Instructions = genes (DNA substrings)
- Execution = gene expression
 - transcribed to RNA molecules

- Code = DNA (strings of nucleotides)
- Instructions = genes (DNA substrings)
- Execution = gene expression
 - transcribed to RNA molecules
- Main question: which genes are currently expressed?

- Code = DNA (strings of nucleotides)
- Instructions = genes (DNA substrings)
- Execution = gene expression
 - transcribed to RNA molecules
- Main question: which genes are currently expressed?
 - Analogous to CPU's current state

Juxtacrine (direct contact): respects network's topology

Juxtacrine (direct contact): respects network's topology

Juxtacrine (direct contact): respects network's topology

Delivery of message m from cell x to cell y

• x produces molecule m

Juxtacrine (direct contact): respects network's topology

- I x produces molecule m
- 2 *m* crosses from x to y

Juxtacrine (direct contact): respects network's topology

- x produces molecule m
- m crosses from x to y
 - gap junction connecting two cytoplasms

Juxtacrine (direct contact): respects network's topology

- I x produces molecule m
- *m* crosses from *x* to *y*
 - gap junction connecting two cytoplasms
 - binds to crossmembrane receptor

Juxtacrine (direct contact): respects network's topology

- I x produces molecule m
- m crosses from x to y
 - gap junction connecting two cytoplasms
 - binds to crossmembrane receptor
- Triggers a signaling cascade inside y

Juxtacrine (direct contact): respects network's topology

- I x produces molecule m
- In crosses from x to y
 - gap junction connecting two cytoplasms
 - binds to crossmembrane receptor
- Triggers a signaling cascade inside y
- Modifies concentration levels in nucleus

Juxtacrine (direct contact): respects network's topology

- I x produces molecule m
- 2 m crosses from x to y
 - gap junction connecting two cytoplasms
 - binds to crossmembrane receptor
- Triggers a signaling cascade inside y
- Modifies concentration levels in nucleus
- Affects y's gene expression

Juxtacrine (direct contact): respects network's topology

- I x produces molecule m
- In crosses from x to y
 - gap junction connecting two cytoplasms
 - binds to crossmembrane receptor
- Triggers a signaling cascade inside y
- Modifies concentration levels in nucleus
- Affects y's gene expression
 - Gap junction/receptor = port

Juxtacrine (direct contact): respects network's topology

- I x produces molecule m
- m crosses from x to y
 - gap junction connecting two cytoplasms
 - binds to crossmembrane receptor
- Triggers a signaling cascade inside y
- Modifies concentration levels in nucleus
- Affects y's gene expression
 - Gap junction/receptor = port
 - No sense of direction
 - all neighbors look the same

2 Abstract distributed computing models

3 Networked finite state machines

4 Results

• MIS algorithm

5 Conclusions

Nodes act locally (don't know global topology)

Nodes act locally (don't know global topology)

In each step, node v:

Nodes act locally (don't know global topology)

In each step, node v:

• sends messages to N(v)

Nodes act locally (don't know global topology)

In each step, node v:

- sends messages to N(v)
- receives messages from N(v)

Nodes act locally (don't know global topology)

In each step, node v:

- sends messages to N(v)
- receives messages from N(v)
- performs local computation

Nodes act locally (don't know global topology)

In each step, node v:

- sends messages to N(v)
- receives messages from N(v)
- performs local computation

Communication too strong

Nodes act locally (don't know global topology)

In each step, node v:

- sends messages to N(v)
- receives messages from N(v)
- performs local computation

Communication too strong

independent messages to/from each neighbor

Nodes act locally (don't know global topology)

In each step, node v:

- sends messages to N(v)
- receives messages from N(v)
- performs local computation

Communication too strong

independent messages to/from each neighbor

Nodes act locally (don't know global topology)

In each step, node v:

- sends messages to N(v)
- receives messages from N(v)
- performs local computation

Communication too strong

- independent messages to/from each neighbor
- # message types grows with n

Messages = **beeps** (no information)

Messages = **beeps** (no information)

Node distinguishes 0 and \geq 1 beeps

Messages = **beeps** (no information)

Node distinguishes 0 and \geq 1 beeps

Messages = **beeps** (no information)

Node distinguishes 0 and ≥ 1 beeps

Local computation too strong

Messages = **beeps** (no information)

Node distinguishes 0 and ≥ 1 beeps

Local computation too strong

Messages = **beeps** (no information)

Node distinguishes 0 and \geq 1 beeps

Local computation too strong

• A fixed collection of states

- A fixed collection of states
- A fixed collection of input signals (a.k.a. alphabet)

- A fixed collection of states
- A fixed collection of input signals (a.k.a. alphabet)
- state $(t+1) \leftarrow \text{state}(t), \text{signal}(t)$

- A fixed collection of states
- A fixed collection of input signals (a.k.a. alphabet)
- state $(t+1) \leftarrow \text{state}(t), \text{signal}(t)$
 - determined by transition function

- A fixed collection of states
- A fixed collection of input signals (a.k.a. alphabet)
- state $(t+1) \leftarrow \text{state}(t), \text{signal}(t)$
 - determined by transition function
- Computational power ≪

- A fixed collection of states
- A fixed collection of input signals (a.k.a. alphabet)
- state $(t+1) \leftarrow \text{state}(t), \text{signal}(t)$
 - determined by transition function
- Computational power «

Cell enzymes "programmed" to implement an FSM [Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

- A fixed collection of states
- A fixed collection of input signals (a.k.a. alphabet)
- state $(t+1) \leftarrow \text{state}(t), \text{signal}(t)$
 - determined by transition function
- Computational power \ll

Cell enzymes "programmed" to implement an FSM [Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Cellular automata

Infinite grid of FSMs

 $q_{x,y}(t+1) \longleftarrow q_{x,y}(t), \{q_{x',y'}(t) : \text{grid neighbors } (x',y')\}$

$$q_{x,y}(t+1) \longleftarrow q_{x,y}(t), \{q_{x',y'}(t): ext{grid neighbors } (x',y')\}$$

Typical question: How an initial (finite) configuration evolves?

$$q_{x,y}(t+1) \longleftarrow q_{x,y}(t), \{q_{x',y'}(t) : \text{grid neighbors } (x',y')\}$$

Typical question: How an initial (finite) configuration evolves?

Invented by

(crystal growth, self-replicating systems)

$$q_{x,y}(t+1) \longleftarrow q_{x,y}(t), \{q_{x',y'}(t) : \text{grid neighbors } (x',y')\}$$

Typical question: How an initial (finite) configuration evolves?

Invented by

(crystal growth, self-replicating systems)

Game of life

$$q_{x,y}(t+1) \longleftarrow q_{x,y}(t), \{q_{x',y'}(t) : \text{grid neighbors } (x',y')\}$$

Typical question: How an initial (finite) configuration evolves?

Invented by

(crystal growth, self-replicating systems)

Game of life

$$q_{x,y}(t+1) \longleftarrow q_{x,y}(t), \{q_{x',y'}(t) : \text{grid neighbors } (x',y')\}$$

Typical question: How an initial (finite) configuration evolves?

Invented by

(crystal growth, self-replicating systems)

Game of life

Biological processes

 $q_{x,y}(t+1) \longleftarrow q_{x,y}(t), \{q_{x',y'}(t): \text{grid neighbors } (x',y')\}$

Typical question: How an initial (finite) configuration evolves?

Invented by

(crystal growth, self-replicating systems)

Game of life

Highly regular topology

2 Abstract distributed computing models

One the state machines

4 Results

• MIS algorithm

5 Conclusions

• Every node is a FSM

- Every node is a FSM
- Communication based on transmissions: same message delivered to all neighbors

- Every node is a FSM
- Communication based on transmissions: same message delivered to all neighbors
- \bullet Message is a letter in a constant-size communication alphabet Σ

- Every node is a FSM
- Communication based on transmissions: same message delivered to all neighbors
- $\bullet\,$ Message is a letter in a constant-size communication alphabet $\Sigma\,$
- Node u has a port corresponding to each $v \in N(u)$
 - Stores the last message $\sigma \in \Sigma$ delivered from v

- Every node is a FSM
- Communication based on transmissions: same message delivered to all neighbors
- Message is a letter in a constant-size communication alphabet $\boldsymbol{\Sigma}$
- Node u has a port corresponding to each $v \in N(u)$
 - Stores the last message $\sigma \in \Sigma$ delivered from v
- In each step, *u* decides on next state and which letter to transmit based on its current state and letters currently stored in its ports

- Every node is a FSM
- Communication based on transmissions: same message delivered to all neighbors
- Message is a letter in a constant-size communication alphabet $\boldsymbol{\Sigma}$
- Node u has a port corresponding to each $v \in N(u)$
 - Stores the last message $\sigma \in \Sigma$ delivered from v
- In each step, *u* decides on next state and which letter to transmit based on its current state and letters currently stored in its ports
- Problem:
 - # possible signals = # port configurations = $|\Sigma|^{\deg(u)}$

- Every node is a FSM
- Communication based on transmissions: same message delivered to all neighbors
- Message is a letter in a constant-size communication alphabet $\boldsymbol{\Sigma}$
- Node u has a port corresponding to each $v \in N(u)$
 - Stores the last message $\sigma \in \Sigma$ delivered from v
- In each step, *u* decides on next state and which letter to transmit based on its current state and letters currently stored in its ports
- Problem:
 - # possible signals = # port configurations = $|\Sigma|^{\deg(u)}$
 - Should be fixed in a FSM!

• Node *u* cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)

- Node *u* cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- # possible signals = $\binom{\deg(u) + |\Sigma| 1}{|\Sigma| 1} = \operatorname{poly}(\deg(u))$

- Node *u* cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- # possible signals = $\binom{\deg(u) + |\Sigma| 1}{|\Sigma| 1} = poly(\deg(u))$
- π_{σ} calculated by the one-two-many principle:

- Node *u* cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- # possible signals = $\binom{\deg(u) + |\Sigma| 1}{|\Sigma| 1} = poly(\deg(u))$
- π_σ calculated by the one-two-many principle: isolated cultures developed counting systems that don't go beyond 2

Warlpiri (Australia)

Piraha (the Amazon)
- Node *u* cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- # possible signals = $\binom{\deg(u) + |\Sigma| 1}{|\Sigma| 1} = poly(\deg(u))$
- π_σ calculated by the one-two-many principle: isolated cultures developed counting systems that don't go beyond 2

Warlpiri (Australia)

Piraha (the Amazon)

• Constant bounding parameter $b \in \mathbb{Z}_{>0}$ (property of the algorithm)

- Node *u* cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- # possible signals = $\binom{\deg(u) + |\Sigma| 1}{|\Sigma| 1} = poly(\deg(u))$
- π_σ calculated by the one-two-many principle: isolated cultures developed counting systems that don't go beyond 2

Piraha (the Amazon)

- Constant bounding parameter $b \in \mathbb{Z}_{>0}$ (property of the algorithm)
- *u* can distinguish between $\pi_{\sigma} = 0, 1, \dots, b-1$, or $\pi_{\sigma} \geq b$

- Node *u* cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- # possible signals = $\binom{\deg(u) + |\Sigma| 1}{|\Sigma| 1} = poly(\deg(u))$
- π_σ calculated by the one-two-many principle: isolated cultures developed counting systems that don't go beyond 2

Piraha (the Amazon)

- Constant bounding parameter $b \in \mathbb{Z}_{>0}$ (property of the algorithm)
- *u* can distinguish between $\pi_{\sigma} = 0, 1, \dots, b-1$, or $\pi_{\sigma} \geq b$
- # possible signals = $(b+1)^{|\Sigma|}$

- Node *u* cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- # possible signals = $\binom{\deg(u) + |\Sigma| 1}{|\Sigma| 1} = poly(\deg(u))$
- π_σ calculated by the one-two-many principle: isolated cultures developed counting systems that don't go beyond 2

Piraha (the Amazon)

- Constant bounding parameter $b \in \mathbb{Z}_{>0}$ (property of the algorithm)
- *u* can distinguish between $\pi_{\sigma} = 0, 1, \dots, b-1$, or $\pi_{\sigma} \geq b$
- # possible signals = $(b+1)^{|\Sigma|}$
- FSM's transition function: $\delta: Q \times \{0, 1, \dots, b\}^{\Sigma} \to Q \times \Sigma$

- Node *u* cares only about the number π_{σ} of appearances of each $\sigma \in \Sigma$ in its ports (currently)
- # possible signals = $\binom{\deg(u) + |\Sigma| 1}{|\Sigma| 1} = poly(\deg(u))$
- π_σ calculated by the one-two-many principle: isolated cultures developed counting systems that don't go beyond 2

Piraha (the Amazon)

- Constant bounding parameter $b \in \mathbb{Z}_{>0}$ (property of the algorithm)
- *u* can distinguish between $\pi_{\sigma} = 0, 1, \dots, b-1$, or $\pi_{\sigma} \geq b$
- $\# \text{ possible signals} = (b+1)^{|\Sigma|}$
- FSM's transition function: $\delta: Q \times \{0, 1, \dots, b\}^{\Sigma} \to 2^{Q \times \Sigma}$

• Applicable to arbitrary network topologies

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including deg(u)):

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including deg(u)):
 - number of states

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including deg(u)):
 - number of states
 - size of alphabet $\boldsymbol{\Sigma}$

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including deg(u)):
 - number of states
 - size of alphabet $\boldsymbol{\Sigma}$
 - bounding parameter b

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including deg(u)):
 - number of states
 - size of alphabet $\boldsymbol{\Sigma}$
 - bounding parameter b
 - size of the description of $\delta: Q imes \{0, 1, \dots, b\}^{|\Sigma|} o 2^{Q imes \Sigma}$

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including deg(u)):
 - number of states
 - size of alphabet $\boldsymbol{\Sigma}$
 - bounding parameter b
 - size of the description of $\delta: Q imes \{0, 1, \dots, b\}^{|\Sigma|} o 2^{Q imes \Sigma}$
- A genuine FSM!

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including deg(u)):
 - number of states
 - size of alphabet $\boldsymbol{\Sigma}$
 - bounding parameter b
 - size of the description of $\delta: Q imes \{0, 1, \dots, b\}^{|\Sigma|} o 2^{Q imes \Sigma}$
- A genuine FSM!
- Fully asynchronous environment

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including deg(u)):
 - number of states
 - size of alphabet $\boldsymbol{\Sigma}$
 - bounding parameter b
 - size of the description of $\delta: Q imes \{0, 1, \dots, b\}^{|\Sigma|} o 2^{Q imes \Sigma}$
- A genuine FSM!
- Fully asynchronous environment
- The biological angle:

- Applicable to arbitrary network topologies
- Nodes run the same (randomized) protocol
- All parameters of the protocol are constants, independent of any feature of the input graph (including deg(u)):
 - number of states
 - size of alphabet $\boldsymbol{\Sigma}$
 - bounding parameter b
 - size of the description of $\delta: Q imes \{0, 1, \dots, b\}^{|\Sigma|} o 2^{Q imes \Sigma}$
- A genuine FSM!
- Fully asynchronous environment
- The biological angle:
 - one-two-many counting = discrete analogue for detecting different concentration levels

Cells as computing devices

2 Abstract distributed computing models

3 Networked finite state machines

4 Results

MIS algorithm

5 Conclusions

• # time units until all nodes terminate

- # time units until all nodes terminate
- Efficient algorithm = $\log^{O(1)} n$ run-time [Linial 92]

- # time units until all nodes terminate
- Efficient algorithm = $\log^{O(1)} n$ run-time [Linial 92]
- Las Vegas algorithms, irrevocable output

- # time units until all nodes terminate
- Efficient algorithm = $\log^{O(1)} n$ run-time [Linial 92]
- Las Vegas algorithms, irrevocable output
- Run-time bounds hold in expectation and w.h.p.

Efficient algorithms

Efficient algorithms

• Maximal Independent Set in arbitrary graphs

• run-time =
$$O(\log^2 n)$$

Efficient algorithms

- Maximal Independent Set in arbitrary graphs
 - run-time = $O(\log^2 n)$
- Maximal 2-hop Independent Set in arbitrary graphs
 - run-time = $O(\log^2 n)$

- Maximal Independent Set in arbitrary graphs
 - run-time = $O(\log^2 n)$
- Maximal 2-hop Independent Set in arbitrary graphs
 - run-time = $O(\log^2 n)$
- Coloring bounded degree graphs with $\Delta+1$ colors
 - run-time = $O(\log n)$

- Maximal Independent Set in arbitrary graphs
 - run-time = $O(\log^2 n)$
- Maximal 2-hop Independent Set in arbitrary graphs
 - run-time = $O(\log^2 n)$
- Coloring bounded degree graphs with $\Delta+1$ colors
 - run-time = $O(\log n)$
- \bullet 2-hop Coloring bounded degree graphs with Δ^2+1 colors
 - run-time = $O(\log n)$

- Maximal Independent Set in arbitrary graphs
 - run-time = $O(\log^2 n)$
- Maximal 2-hop Independent Set in arbitrary graphs
 - run-time = $O(\log^2 n)$
- \bullet Coloring bounded degree graphs with $\Delta+1$ colors
 - run-time = $O(\log n)$
- \bullet 2-hop Coloring bounded degree graphs with Δ^2+1 colors
 - run-time = $O(\log n)$
- Coloring arbitrary trees with 3 colors
 - run-time = $O(\log n)$

- Maximal Independent Set in arbitrary graphs
 - run-time = $O(\log^2 n)$
- Maximal 2-hop Independent Set in arbitrary graphs
 - run-time = $O(\log^2 n)$
- \bullet Coloring bounded degree graphs with $\Delta+1$ colors
 - run-time = $O(\log n)$
- \bullet 2-hop Coloring bounded degree graphs with Δ^2+1 colors
 - run-time = $O(\log n)$
- Coloring arbitrary trees with 3 colors
 - run-time = $O(\log n)$
- Maximal Matching in arbitrary graphs (small model modification)
 - run-time = $O(\log^2 n)$

Theorem (Synchronizer)

Every nFSM algorithm designed to operate in a synchronous environment can be simulated in an asynchronous environment with a constant multiplicative run-time overhead.

Theorem (Computability)

In terms of their computational power, nFSM algorithms are (almost) equivalent to randomized linear-space Turing machines.

2 Abstract distributed computing models

3 Networked finite state machines

4 Results

• MIS algorithm

5 Conclusions

The MIS problem

Independent set: set of nodes with no neighbors

The MIS problem

Independent set: set of nodes with no neighbors

maximal independent set (MIS): cannot be extended

The MIS problem

Independent set: set of nodes with no neighbors

maximal independent set (MIS): cannot be extended

The MIS problem: input: (arbitrary) network output: MIS

• Existing MIS algorithms rely on grouping steps into phases: u competes with N(u) over joining the MIS

- Existing MIS algorithms rely on grouping steps into phases: u competes with N(u) over joining the MIS
- Require either
 - calculations with super-constant variables
 - independent communication with each neighbor
 - messages of logarithmic size

- Existing MIS algorithms rely on grouping steps into phases: u competes with N(u) over joining the MIS
- Require either
 - calculations with super-constant variables
 - independent communication with each neighbor
 - messages of logarithmic size
- Idea: transmit O(1) bits per step
 - logarithmically long phases

- Existing MIS algorithms rely on grouping steps into phases: u competes with N(u) over joining the MIS
- Require either
 - calculations with super-constant variables
 - independent communication with each neighbor
 - messages of logarithmic size
- Idea: transmit O(1) bits per step
 - logarithmically long phases
- Problem:
 - *u* must count the steps in a phase (deciding when it ends)

- Existing MIS algorithms rely on grouping steps into phases: u competes with N(u) over joining the MIS
- Require either
 - calculations with super-constant variables
 - independent communication with each neighbor
 - messages of logarithmic size
- Idea: transmit O(1) bits per step
 - logarithmically long phases
- Problem:
 - *u* must count the steps in a phase (deciding when it ends)
 - phases must be aligned to guarantee fair competition

- Existing MIS algorithms rely on grouping steps into phases: u competes with N(u) over joining the MIS
- Require either
 - calculations with super-constant variables
 - independent communication with each neighbor
 - messages of logarithmic size
- Idea: transmit O(1) bits per step
 - logarithmically long phases
- Problem:
 - *u* must count the steps in a phase (deciding when it ends)
 - phases must be aligned to guarantee fair competition
- How can we decide if *u* joins MIS without long aligned phases?

MIS under nFSM — solution

• Relax requirement that phase is aligned and of predetermined length

- Relax requirement that phase is aligned and of predetermined length
- Tournament:
 - length determined probabilistically
 - "softly" aligned
 - maintained under nFSM

• Relax requirement that phase is aligned and of predetermined length

• Tournament:

- length determined probabilistically
- "softly" aligned
- maintained under nFSM
- Prove:

• Amortized length of a tournament is $O(\log n)$ w.h.p.

• Relax requirement that phase is aligned and of predetermined length

• Tournament:

- length determined probabilistically
- "softly" aligned
- maintained under nFSM
- Prove:
 - Amortized length of a tournament is $O(\log n)$ w.h.p.
 - Quarantee fair competition ⇒ const fraction of the edges is removed with const probability ⇒ O(log n) tournaments w.h.p.

Cells as computing devices

2 Abstract distributed computing models

3 Networked finite state machines

4 Results

MIS algorithm

• Abstract model for network of FSMs

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms
- Suitable to biological cellular networks
 - Local computation, communication, asynchrony

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms
- Suitable to biological cellular networks
 - Local computation, communication, asynchrony
 - Also networks of man made nano-devices

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms
- Suitable to biological cellular networks
 - Local computation, communication, asynchrony
 - Also networks of man made nano-devices
- Another model: population protocols (pairwise interactions, eventual correctness)

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms
- Suitable to biological cellular networks
 - Local computation, communication, asynchrony
 - Also networks of man made nano-devices
- Another model: population protocols (pairwise interactions, eventual correctness)
- Reasonable constants (MIS: $|Q| = |\Sigma| = 7$, b = 1)

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms
- Suitable to biological cellular networks
 - Local computation, communication, asynchrony
 - Also networks of man made nano-devices
- Another model: population protocols (pairwise interactions, eventual correctness)
- Reasonable constants (MIS: $|Q| = |\Sigma| = 7$, b = 1)
- Open problem: dynamic environment

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms
- Suitable to biological cellular networks
 - Local computation, communication, asynchrony
 - Also networks of man made nano-devices
- Another model: population protocols (pairwise interactions, eventual correctness)
- Reasonable constants (MIS: $|Q| = |\Sigma| = 7$, b = 1)
- Open problem: dynamic environment
- Joint research project with Jara Uitto and Roger Wattenhofer

- Abstract model for network of FSMs
- Fundamental DC problems admit efficient algorithms
- Suitable to biological cellular networks
 - Local computation, communication, asynchrony
 - Also networks of man made nano-devices
- Another model: population protocols (pairwise interactions, eventual correctness)
- Reasonable constants (MIS: $|Q| = |\Sigma| = 7$, b = 1)
- Open problem: dynamic environment
- Joint research project with Jara Uitto and Roger Wattenhofer

תודה רבה