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Why New Semantics?

e Amenable to efficient implementation
e Linearizability is often too costly

* Meaningful
e Bound sketches’ estimation errors

e Leverage what we know about the sequential case
e Error analysis
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Motivation: Massive Real-Time Analytics
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Fast First Analytics Will Simplify Your Life

Published on February 3, 2017
Tripp Smith Follow 18 0 8
Chief Technology Officer at Clarity Solution Group

IDC estimates 82% of organizations are in some phase of adopting real-time analytics in
the past year. [1] Low latency, "fast first" integration and analytics make managing big
data easier ("low latency" and "fast first" here are used to avoid contention surrounding

the semantic definition of commonly overused terms streaming or real-time). Capturing

event data, generated in real time, in offline storage to process in batches at intervals,

nvarniaht ar at tha and of tha month was never easy. It was possibly a pattern born of

International Data < —
Corporation =—= IDC
Market research company

Analyze the Future
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OLAP - Online Analytical Processing Examples
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Motivation: Big Data Analytics & Monitoring
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The Tool: Data Sketches
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Data Sketches: Lean & Mean Aggregation

e Statistical summary of large stream

 Estimates some aggregate
* #uniques
e quantiles
* heavy-hitters
* item frequencies

* Fast
e Small memory footprint
e Widely-used
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Real-Time Analytics — Where We Fit In

Content
Processing
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Example: Estimating the Number of Uniques

e E.g., unique visitors to a web page

e How many uniques?

Idit Keidar, DISC October 2020
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® Sketch: Basic Idea

e Hash unique elements into [0,1] uniformly at random




® Sketch: Basic Idea

e Hash unique elements into [0,1] uniformly at random

* How do we estimate how many there are?
e Without keeping all of them in memory?




® Sketch: Basic Idea

e Hash unique elements into [0,1] uniformly at random
e Fora threshold 0,0 <0 <1

» Keep elements with hashes smaller than ®
* |In expectation, a © portion of the unigues in the stream




KMV ® Sketch
[Bar-Yossef et al. 2002]

e © = k™ minimum hash value seen (initially ® = 1)
e Estimate=k/0
e Example: k=4
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KMV ® Sketch

e © = k™ minimum hash value seen (initially ® = 1)
e Estimate=k/0
e Example: k=4




Sketches Are Approximate

e Typically PAC (probably approximately correct)
e Error at most € with probability at least 1 — 6
* With appropriately chosen parameters
e Each sketch comes with its own analysis

68.27%

e KMV provides an estimate é
e E[é] = n, the number of uniques

\ 95.45%

* RSE[6] = = ]

2y, 2 Std Dev: -20
e RSE is the relative standard error = =

n
[Bar-Yossef et al. 2002]

-10 Est +10 +20
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® Sketches Are Fast e

* On incoming id
h = hash(id)
ifh<®
add h to sketch
if |sketch| >k, remove largest

® = largest hash in sketch

No else!
Once 0 is small, usually
does nothing more

Idit Keidar, DISC October 2020
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More Examples

* Event counters
e Quantiles — e.g., duration of 90t percentile of sessions

* [tem frequency — CountMin
e Heavy hitters

Data
Sketch

Idit Keidar, DISC October 2020
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Hardware Trends

e Multi-core servers
e Performance via parallelism, not sequential speed

e Cheaper DRAM

* In-memory processing of bigger data Average selling price of
1Gb DRAM 2009 to 2017
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What and Why - Recap

e What?

e Concurrent data sketches, approximate counters
e Why?

* Online monitoring & analytics of big data streams

e Why concurrent?
e Today’s hardware: multi-core with larger RAM

e Challenges
e Efficient implementation

 Meaningful semantics — leveraging what we know about the
sequential case

Idit Keidar, DISC October 2020
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Roadmap Recap
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Context: Open-Source DataSketches Library

DataSketches

Apache
Incubating

Sketches Library from YAHOO!

A software library of stochastic streaming algorithms
@ Overview & Download © GitHub 4 Research

¢ Forum

The Business Challenge: Analyzing Big Data Quickly.
Idit Keidar, DISC October 2020




Today’s Sketches Aren’t Thread-Safe

sketches-user »
SketchesArgumentException: Key not found and no empty slot in table

6 posts by 2 authors &

“r  Higuys,

| encounter this exception when update sketch. | have googled but found nothing.
Anyone encounterad the same issue? Pleasa help mel

./
% leerho commented on Jan 18, 2018 Contributor =~ () e+

None of the sketches in the library are multi-threaded. If you have
concurrent threads reading and writing to the same sketch you must make

your sketch wrapper synchronized.

https://github.com/apache/incubator-datasketches-java/issues/178#issuecomment-
365673204
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Challenge 1: Sketches Aren’t Thread-Safe

Need protection: ™) But locks are costly:
try { : ® Sket;h Single-Thread
Insertion Throughput
lock (sketch) 100
sketch.update(...); 75
} finally { 50

unlock (sketch)

million op/sec

. ]
0

m original = lock-based
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Challenge 2: Can’t Query While Updating

Current approach:

e Use locks
or

A

WWwWwW

M

Q@
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e Update in epochs, query previous epoch

] Sketch Sketch
— _—
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Concurrent DataSketches
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Concurrent Sketches - Goals

e High throughput
e Concurrent updates
e Harness multi-cores for multi-threaded stream processing

e Query freshness
e Allow queries during updates

e Ease-of-use
e Library, not application, responsible for synchronization

* Enjoy sketch’s benefits
* Fast
e Bounded estimation error

e Small memory footprintQ

@)
4]

Idit Keidar, DISC October 2020
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Concurrent Sketches: Generic Architecture

Your favorite
sketch here

= . 4
ETEE’dit Keidar, DISC October 2020



Concurrent Sketches: Generic Architecture

el g

queries | snapshot >

Your favorite
sketch here

More about
that later ...

buffer buffer
(small sketch) " (small sketch)

) )

— -
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Example

® Global Sketch

o A

buffer buffer
(size=2) " (size=2)

v v

— -
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What About Fastness?

® Global Sketch

if (hash(arg)) > 0
skip ¥

[ buffer
L (size=2)

very fast
once 0 is
small

buffer
(size=2)

&

But what is ©
after buffer is
emptied?

if (hash(arg)) > ©
skip
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Optimizations

Problem: Missing critical information (e.g., ©)

Solution: Piggyback sketch-specific information on existing
generic synchronization

Problem: Thread is idle during propagation
Solution: Use double buffering




Space and Error

space & error
bounds of
sequential
sketch

el g

snapshot > Global Sketch

buffer buffer
(small sketch) " (small sketch)

b extra b elements missed by
space query (per buffer)
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Bounding the Error in Small Streams

-

.

Use eager merge
(no buffering) while
stream < threshold

Idit Keidar, DISC October 2020
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Global Sketch

buffer buffer
(small sketch) " (small sketch)

b elements missed by

Out of how many ?

38



Keys to Performance

* Minimize synchronization

e Few fences
» Synchronize only when buffer is filled/empty

* Locality
e Cache & NUMA friendly
e Threads work in (mostly) unshared memory

e But ... share pertinent information
e E.g., up-to-date O for fast processing

Idit Keidar, DISC October 2020
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Update Throughput

- Our Implementation - Lock Based

1250
1000
o
e 750
S 500
g all buffer sizes b.

250

5 10 15 20 25 30
# threads
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Throughput (million ops\ sec)

Another Example: Quantiles Sketch

b=4*4096

Write-Only Throughput
1000 A original

== |ock-based

== [ local levels

== 2 |ocal levels

b=2*4096

== 4 |ocal levels

; lock-
Z _ based

5 10 15 20 25 30

Here, the buffer size b matters.
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Proof Overview

* We show that
e our generic algorithm
* instantiated with a composable sketch
e satisfies strong linearizability [Golab et al. ]
e wrt an r-relaxation [Henzinger et al.] of
* the sequential specification derived from the sequential sketch
e for r = 2Nb; N = #threads, b = buffer size

We then analyze the error of the relaxed specification

_—— N\

[ By strong linearizability, this is the error of our sketch! }

Idit Keidar, DISC October 2020
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Analyzed Error of Concurrent ® sketch

]:n k—1 E[e]:n

Relative
error is
similar

- e o == o as - e s e e e e = =

Mean is

shifted
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RSE

Empirical Evaluation of Relative Error

— Megn_ReIErr
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Interim Summary: Fast Concurrent Sketches

e Generic solution based on composable sketches
 Rigorous correctness proof using relaxed consistency

e High throughput via concurrent updates

* Query freshness B

e Allow queries during updates

 Ease-of-use Now
e Library responsible for synchronization . / Available
* Enjoy sketches’ benefits

e Fast
* Bounded estimation error

e Small memory footprint;

Sketches Library from YAHOO!

A software library of stochastic streaming algorithms

[e)
(2]
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Roadmap Recap
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Wait, didn’t you just
say you proved
correctness?

Something about
r-relaxed strong
linearizability?
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Concurrency on the Global Sketch Revisited

el g

queries [ snapshot > Global Sketch

S

* The global sketch is strongly linearizable
e The r-relaxation only arises due to buffering (local sketches)

* In general, this requires atomic snapshots
* In the ® sketch, snapshots are cheap
 Alas, this is not always the case

Told ya I'd say
more about that.

Idit Keidar, DISC October 2020 48



Example: CountMin Sketch
[Cormode and Muthukrishna, 2005]

e Estimates item frequency
w

A
[ |

OOOOS

h’l' ""h’d: x> [W]
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Example: CountMin Sketch

| 7
1
3
1
A
2
hi,..,hg: X~ [wW]
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Example: CountMin Sketch

h’l' ""h'd: x> [W]
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Example: CountMin Sketch

h’l' ""h'd: x> [W]
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Example: CountMin Sketch

OOOOE

h’l' ""h'd: x> [W]
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Example: CountMin Sketch
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Example: CountMin Sketch

h’l' ""h'd: x> [W]

Idit Keidar, DISC October 2020

55



Example: CountMin Sketch

w
h) | 2
(hy) 4
hy) | 2
5
(1)
hi,..,hg: 2~ W]
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CountMin Sequential Error Bounds

e Consider a query invoked after N updates

* Let f(a) denote the frequency of a in these updates
e query(a) returns an estimate f (a) of f(a)

 For desired parameters €, 9,

CountMin’s parameters w and d can be chosen so that
f(a) < f(a), and with probability at least 1 — §:

f(a) < f(a) +eN

[Cormode and Muthukrishna, 2005]

Idit Keidar, DISC October 2020
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What About Concurrency?

e Can a query just read the counters?

[N

update update update

I |
) ! !

read hy read h, read|h3 read|h4,h5
query(

Idit Keidar, DISC October 2020



What About Concurrency?

e Can a query just read the counte

P4

update update

>
@4 /
read hy read h, read h; read hy, hc
query(

l l LN

[ [
Might return f(a) that does
not occur in any linearization

Idit Keidar, DISC October 2020 59



What About Concurrency?

e Can a query just read the counte

inc |h1 inc |hz i

update

reaoll h,; read |h2 - hg
| query( §) >

Idit Keidar, DISC October 2020 60



Problem?

* We required the shared global sketch to be strongly
linearizable

e This makes it indistinguishable from an atomic variable
* And so preserves the error bounds of the sequential sketch
e Note: this holds for any sequential sketch

e But ... requires an atomic snapshot (costly)



But ...

 What if a query just reads the counters?

uédate > update > uédate >

query(a)

NTT—

If the query atomically happens here, it returns fs(a) so that

f*(a) < f*(a)

Idit Keidar, DISC October 2020



But ...

 What if a query just reads the counters?

uédate >

update >

uEdate >

If the query atomically happens here, it returns fe(a) so that
fé(a) < fé(a) + eN°¢ with probability at least 1 — §

Idit Keidar, DISC October 2020
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But ...

 What if a query just reads the counters?

uédate > update >

uédate >

query(a)

All counters are monotonic, so the query returns f(a)

f5(@) < f(a) < fé(a)

Idit Keidar, DISC October 2020
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So ...

The error

. FS < 2 remains
]ie(a) — fe(a) . bounded
*f€(a) < fé(a) + eN€ withprob =1 -6 without a

.fS(a) < f(a) < f‘e(a) snapshot

* We get:‘fs(a) S(f?ﬁﬁ fAe(a) + eN€ withprob >1—-6

\

The item’s frequency The item’s frequency The stream size at the
at the time when the at the time when the time when the query
query begins query ends ends

Idit Keidar, DISC October 2020 65



OK, so a concurrent
CountMin sketch does not
need to be linearizable,
but can you specify what it
does need to ensure?

Better yet, can you specify
a generic property that
applies to many sketches?

Idit Keidar, DISC October 2020 66



Intermediate Value Linearizability (IVL)

e A correctness criterion for concurrent quantitative objects
e A query returns a value from a totally ordered domain
e E.g., sketches, counters

e Cheaper than linearizability
* Inherently in some cases (see Arik’s talk)

* Preserves the error bounds of the sequential object

* Enforces (non-relaxed) linearizability in sequential
executions, allows more freedom in concurrent ones

A local property (composable)

Idit Keidar, DISC October 2020
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VL — Simple Example

e Every query’s return value is bounded between two legal
values that can be returned in linearizations

query >
May return any value between 17 and 24 ]

Idit Keidar, DISC October 2020 68




(€, 0)-Bounded Objects

e For an ideal value v, a query returns a value ¥ such that
with probability atleast 1 — §/2: V> v —¢€
and
with probability atleast 1 —6/2: P <v+¢€

 Many examples, including ®, Quantiles, CountMin, ...

Idit Keidar, DISC October 2020 69



Our Main Theorem

An IVL implementation of a sequential (€, 6)-bounded
object is a concurrent (€, 6)-bounded object.



To Conclude

 Big data analytics has big demands

 Memory is getting bigger — more data can be analyzed in memory
e CPUs are not getting faster — need to harness multi-cores

e Concurrent processing challenges:

e Efficiency — minimize synchronization, share pertinent information
e Correctness — analyze impact of concurrency on error

e Our contributions:
* Framework for fast concurrent sketches
» Correctness semantics with guaranteed error bounds

[Thankyou!

Idit Keidar, DISC October 2020
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