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Scientific frameworks

Classical scientific frameworks in biology

Experimental framework:

1 Preprocessing stage: observe and analyze

2 “Guess” a mathematical model

3 Data analysis: tune the parameters
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Scientific frameworks

Example: the Albatross (Nature 1996, 2007)

Pr(l =d)	
  ≈	
  1/dα	
  

The Albatross is performing a Lévy flight

What is α? do statistics on experiments and obtain e.g., α = 2
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Scientific frameworks

Theoretical framework:

1 Guess an abstract mathematical model
(loosely representing reality)

2 Analyze the model

Find parameters maximizing a utility function

Example: if you perform a Lévy flight search under some certain food
distribution then α = 2 is optimal [Viswanathan et al. Nature 1999]

“Explain” a known phenomena

Example: Kleinberg’s analysis of the greedy routing algorithm in
small world networks “explains” Milgram’s experiment [Nature 2000]
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How can an algorithmic perspective contribute?

An algorithmic perspective

Recently, CS theoreticians have tried to contribute from an algorithmic
perspective [Alon, Chazelle, Kleinberg, Papadimitriou, Valiant, etc.].

Guiding principle

Algorithms’ people are good at:

1 Formulating sophisticated guesses (algorithms)

2 Analyzing the algorithms
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How can an algorithmic perspective contribute?

Algorithmic perspective in classical frameworks

Experimental framework:

1 Preprocessing stage: observe and analyze

2 Guess a mathematical model [Afek et al., Science’11]

3 Data analysis: tune the parameters

Theoretical framework:

1 Guess a mathematical model

2 Analyze the model

Maximize a utility function [Papadimitriou et al., PNAS 2008]

Explain a known phenomena [Kleinberg, Nature, 2000]

Can an algorithmic perspective contribute
otherwise?

8 / 30



How can an algorithmic perspective contribute?

Algorithmic perspective in classical frameworks

Experimental framework:

1 Preprocessing stage: observe and analyze

2 Guess a mathematical model [Afek et al., Science’11]

3 Data analysis: tune the parameters

Theoretical framework:

1 Guess a mathematical model

2 Analyze the model

Maximize a utility function [Papadimitriou et al., PNAS 2008]

Explain a known phenomena [Kleinberg, Nature, 2000]

Can an algorithmic perspective contribute
otherwise?

8 / 30



How can an algorithmic perspective contribute?

Tradeoffs: Connections between parameters

A big challenge: reduce the parameter space
Solution in physics: obtain equation (or connection) between
parameters. E.g., E = MC2, ∆U = Q + W , etc.

What about biology?
1st solution: borrow connections from physics
We propose: obtain connections between parameters using an
algorithmic approach.
Tradeoffs: use lower bounds from CS to show that, e.g., any
algorithm that runs in time T must use x amount of resources
(x > f (T )).
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A novel scientific framework

Connecting parameters using an algorithmic perspective

Algorithmic	
  tradeoff	
  	
  
Time	
  vs.	
  Informa4on	
  capacity	
  

Measurements	
  	
  
Time	
  

Lower	
  bound	
  on	
  
Informa4on	
  capacity	
  

Ants	
  

Food	
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A novel scientific framework

Remarks: simplified experimental verifications

Algorithmic	
  tradeoff	
  	
  Measurements	
  	
  

Biological	
  bound	
  

Se7ng	
  
• 	
  Simple	
  
• 	
  Realis+c	
  

100%	
  correct	
  	
  

Requires	
  
verifica+on	
  

◦ Tradeoffs are invariant of the algorithm =⇒ Instead of verifying
setting+algorithm, only need to verify the setting! 12 / 30



A novel scientific framework

A proof of concept

This talk
Introduce the model (semi-realistic)

Discuss the theoretical tradeoffs

Experimental part: on-going

Remark
The work is not complete. This presentation is a proof of concept
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Searching for a nearby treasure

Inspiration: the Cataglyphis niger and Honey bee

The Cataglyphis niger:

Desert ant– does not leave traces, more individual
Relatively smart– big brain, good navigation abilities
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Searching for a nearby treasure

Good distance and location estimations [Wehner et al.]
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Searching for a nearby treasure

Goal: find nearby treasures fast

Reasons for proximity
Increasing the rate of food collection in case a large quantity of food
is found [Orians and Pearson, 1979],

Decreasing predation risk [Krebs, 1980],

The ease of navigating back after collecting the food using familiar
landmarks [Collett et al., 1992], etc.

17 / 30



Searching for a nearby treasure

Central place foraging

Goal: find nearby treasures fast (biologically motivated)

No communication once out of the nest

Grid network: the visual radius determines the grid resolution

Fact: The expected running time is Ω(D + D2/k)
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Searching for a nearby treasure

Searching with one ant (k = 1)

An optimal algorithm

Perform a spiral search from the nest (takes O(D2) time).

Random walk
Not efficient: expected time to visit any given node is∞.
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Searching for a nearby treasure

Optimal algorithm (PODC 2012) [Feinerman, Korman, Lotker, Sereni]

Lemma
If agents know the value of k then there exists an optimal algorithm
running in time O(D + D2/k)

2i 

ti
 = 22i+2/k 

Questions: Is it necessary to know k? How much initial information is
necessary?
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Memory lower bounds for probabilistic search (DISC 2012)
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Memory lower bounds for probabilistic search (DISC 2012)

What is the amount of information that agents need initially?

Probabilistic centralized oracle
Given k agents, oracle assigns each agent i an advice Ai

4"

3"

4"7"

?


3"

6"
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Memory lower bounds for probabilistic search (DISC 2012)

Information theoretic approach

Advice complexity
Given k agents, the advice complexity f (k) is the maximum #bits used
for representing the advice of an agent

State complexity
Note, a lower bound f on the advice complexity implies a lower bound of
2f on the # of possible advices (states) when coming out of the nest
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Memory lower bounds for probabilistic search (DISC 2012)

Main theorem [Feinerman and Korman, DISC 2012]

Theorem
For every 0 < ε ≤ 1, whatever algorithm ants use:
if the search time is ≤ log1−ε k · (D + D2/k) then the advice complexity
is ε log log k −O(1)

Corollary

If time is T ≤ log1−ε k · (D + D2/k) then number of states when coming
out of the nest is S = Ω(logε k)

Remarks
Results are asymptotically tight
Hidden constants are small
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Memory lower bounds for probabilistic search (DISC 2012)

A novel scientific framework?

Combine the theoretical lower bound with an
experiment on living ants

1 Measure the search time - approximate T as a
function of k and D (relatively easy)

2 If the search time T < log1−ε k · (D + D2/k) then the
number of states of ants when coming out of the
nest is Ω(logε k)
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Conclusions

Conclusions and future work

This work is a proof of concept for a novel scientific framework

To fully illustrate it there is a need for experimental work. This will
undoubtedly require some tuning in model and theoretical results

The framework can be applied to other biological contexts. What
about bacteria? tradeoffs between efficiency and communication?

Thanks!
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Conclusions

Simplified proof (for a weaker version of the lower bound)

Lemma

If running time is o(log k · (D + D2/k)) then advice > 0.

Proof

Assume all agents start with the same data-structure no matter what is k

Assume running in time is (D + D2

k ) · φ(k) (and φ(·) is non-decreasing).

I.e., the expected time to visit u is Tu ≤ (d(u, s) + d(u,s)2

k ) · φ(k).

Fix W (upper bound on # agents)

Structure of proof: we show that by time T = 2W · φ(W ), an ant is
expected to visit many nodes: ≈W · log(W ). Since she can visit at most
one node in 1 time unit, it follows that we cannot have φ(W ) = o(log W ).
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Conclusions

Simplified proof (cont.)

√W 

S1 

Si 
ki =22i |Si|=W∙ki 

√W∙2i 

Fix i = 1,2, · · · , log W
2 − 1, and consider

Si := {u |
√

W · 2i−1 < d(u, s) ≤
√

W · 2i}. Note, |Si | ≈W · 22i

Assume now that ki = 22i . So, |Si | ≈W · ki . Note that ki < W .

Moreover, ki = 2i+1 · 2i−1 ≤
√

W · 2i−1. I.e., ki ≤ d(u, s), ∀u ∈ Si .

Therefore,
Tu ≤ (d(u, s) + d(u,s)2

ki
) · φ(ki ) ≤ 2 · d(u,s)2

ki
· φ(ki ) < 2W · φ(W ) = T .
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Conclusions

Simplified proof (cont.)

So, probability of visiting u ∈ Si by time 2T is at least 1/2.

Thus, the expected number of nodes in Si that all agents visit by
time 2T is roughly |Si | ≈W · ki . Hence, the expected number of
nodes in Si that one agent visits by time 2T is |Si |/ki ≈W .

Observe, this holds ∀i ∈ [1, log W
2 ).

Hence, the expected number of nodes that a single agent visits by
time 2T is ≈W · log W . As T ≈W · φ(W ), this implies that we
cannot have φ(W ) = o(log W ).
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