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Scientific frameworks

Classical scientific frameworks in biology

Experimental framework:

@ Preprocessing stage: observe and analyze

©Q “Guess” a mathematical model

© Data analysis: tune the parameters
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Example: the Albatross (Nature 1996, 2007)

Pr(/=d) = 1/d*

The Albatross is performing a Lévy flight

What is «? do statistics on experiments and obtain e.g., « = 2
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Scientific frameworks

Theoretical framework:

© Guess an abstract mathematical model
(loosely representing reality)

©@ Analyze the model
e Find parameters maximizing a utility function

Example: if you perform a Lévy flight search under some certain food
distribution then oo = 2 is optimal [Viswanathan et al. Nature 1999]

e “Explain” a known phenomena

Example: Kleinberg’s analysis of the greedy routing algorithm in
small world networks “explains” Milgram’s experiment [Nature 2000]
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How can an algorithmic perspective contribute?

An algorithmic perspective

Recently, CS theoreticians have tried to contribute from an algorithmic
perspective [Alon, Chazelle, Kleinberg, Papadimitriou, Valiant, etc.].

Guiding principle
Algorithms’ people are good at:

@ Formulating sophisticated guesses (algorithms)

© Analyzing the algorithms




How can an algorithmic perspective contribute?

Algorithmic perspective in classical frameworks

Experimental framework:

@ Preprocessing stage: observe and analyze
© Guess a mathematical model [Afek et al., Science’11]

© Data analysis: tune the parameters

Theoretical framework:
@ Guess a mathematical model
©Q Analyze the model
e Maximize a utility function [Papadimitriou et al., PNAS 2008]

e Explain a known phenomena [Kleinberg, Nature, 2000]
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How can an algorithmic perspective contribute?

Algorithmic perspective in classical frameworks

Experimental framework:

@ Preprocessing stage: observe and analyze
© Guess a mathematical model [Afek et al., Science’11]

© Data analysis: tune the parameters

Theoretical framework:
@ Guess a mathematical model
©Q Analyze the model
e Maximize a utility function [Papadimitriou et al., PNAS 2008]

e Explain a known phenomena [Kleinberg, Nature, 2000]

Can an algorithmic perspective contribute

otherwise?
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How can an algorithmic perspective contribute?

Tradeoffs: Connections between parameters

A big challenge: reduce the parameter space

Solution in physics: obtain equation (or connection) between
parameters. E.g., E = MC?, AU = Q + W, etc.

What about biology?
@ 1st solution: borrow connections from physics

@ We propose: obtain connections between parameters using an
algorithmic approach.
Tradeoffs: use lower bounds from CS to show that, e.g., any
algorithm that runs in time T must use x amount of resources
(x > f(T)).
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A novel scientific framework

Connecting parameters using an algorithmic perspective

Measurements [ Algorithmic tradeoff

Lower bound on
Information capacity
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A novel scientific framework

Remarks: simplified experimental verifications

«Simple

Setting = * Realistic

Requires
veriﬁcaﬁo\. ‘

Measurements Algorithmic tradeoff

v 100% correct
L

Biological bound

o Tradeoffs are invariant of the algorithm — Instead of verifying
setting+algorithm, only need to verify the setting!
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A novel scientific framework

A proof of concept

This talk
@ Introduce the model (semi-realistic)

@ Discuss the theoretical tradeoffs

@ Experimental part: on-going
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A novel scientific framework

A proof of concept

This talk
@ Introduce the model (semi-realistic)

@ Discuss the theoretical tradeoffs

@ Experimental part: on-going

Remark
The work is not complete. This presentation is a proof of concept J
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Searching for a nearby treasure

Inspiration: the Cataglyphis niger and Honey bee

The Cataglyphis niger:
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Searching for a nearby treasure

Inspiration: the Cataglyphis niger and Honey bee

The Cataglyphis niger:

@ Desert ant— does not leave traces, more individual

@ Relatively smart— big brain, good navigation abilities
15/30



Searching for a nearby treasure

Good distance and location estimations [Wehner et al.]
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Searching for a nearby treasure

Goal: find nearby treasures fast

Reasons for proximity

@ Increasing the rate of food collection in case a large quantity of food
is found [Orians and Pearson, 1979],

@ Decreasing predation risk [Krebs, 1980],

@ The ease of navigating back after collecting the food using familiar
landmarks [Collett et al., 1992], etc.

v
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Searching for a nearby treasure

Central place foraging

tr 1 >
% /
k ants =
~

@ Goal: find nearby treasures fast (biologically motivated)

@ No communication once out of the nest

@ Grid network: the visual radius determines the grid resolution
@ Fact: The expected running time is Q(D + D?/k)
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Searching for a nearby treasure

Searching with one ant (k = 1)

An optimal algorithm
Perform a spiral search from the nest (takes O(D?) time). J
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Searching for a nearby treasure

Searching with one ant (k = 1)

An optimal algorithm
Perform a spiral search from the nest (takes O(D?) time). J

Random walk
Not efficient: expected time to visit any given node is co. J
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Searching for a nearby treasure

Optimal algorithm (PODC 2012) [Feinerman, Korman, Lotker, Sereni]

Lemma

If agents know the value of k then there exists an optimal algorithm
running in time O(D + D? /k)

\\ti = 2242/
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Searching for a nearby treasure

Optimal algorithm (PODC 2012) [Feinerman, Korman, Lotker, Sereni]

Lemma

If agents know the value of k then there exists an optimal algorithm
running in time O(D + D? /k)

7t = 2292k

Questions: Is it necessary to know k? How much initial information is
necessary?
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Memory lower bounds for probabilistic search (DISC 2012)

What is the amount of information that agents need initially?

Probabilistic centralized oracle
Given k agents, oracle assigns each agent / an aadvice A, J
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Memory lower bounds for probabilistic search (DISC 2012)

Information theoretic approach

Advice complexity

Given k agents, the advice complexity f(k) is the maximum #bits used
for representing the advice of an agent
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Memory lower bounds for probabilistic search (DISC 2012)

Information theoretic approach

Advice complexity

Given k agents, the advice complexity f(k) is the maximum #bits used
for representing the advice of an agent

v

State complexity

Note, a lower bound f on the advice complexity implies a lower bound of
2" on the # of possible advices (states) when coming out of the nest

v
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Memory lower bounds for probabilistic search (DISC 2012)

Main theorem [Feinerman and Korman, DISC 2012]

Theorem

For every 0 < € < 1, whatever algorithm ants use:

if the search time is < log' = k - (D + D?/k) then the advice complexity
is eloglogk — O(1)
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Main theorem [Feinerman and Korman, DISC 2012]

Theorem

For every 0 < € < 1, whatever algorithm ants use:

if the search time is < log' = k - (D + D?/k) then the advice complexity
is eloglogk — O(1)

.

Corollary

Iftime is T <log'~k - (D + D?/k) then number of states when coming
out of the nest is S = Q(log® k)
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Memory lower bounds for probabilistic search (DISC 2012)

Main theorem [Feinerman and Korman, DISC 2012]

Theorem

For every 0 < € < 1, whatever algorithm ants use:

if the search time is < log' = k - (D + D?/k) then the advice complexity
is eloglogk — O(1)

.

Corollary

Iftime is T <log'~k - (D + D?/k) then number of states when coming
out of the nest is S = Q(log® k)

v

Remarks
@ Results are asymptotically tight

@ Hidden constants are small
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Memory lower bounds for probabilistic search (DISC 2012)

A novel scientific framework?

Combine the theoretical lower bound with an
experiment on living ants

25/30



Memory lower bounds for probabilistic search (DISC 2012)

A novel scientific framework?

Combine the theoretical lower bound with an
experiment on living ants

@ Measure the search time - approximate T as a
function of k and D (relatively easy)

25/30



Memory lower bounds for probabilistic search (DISC 2012)

A novel scientific framework?

Combine the theoretical lower bound with an
experiment on living ants

@ Measure the search time - approximate T as a
function of k and D (relatively easy)

@ If the search time T <log' k- (D+ D?/k) then the
number of states of ants when coming out of the

nest is Q(log® k)
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@ This work is a proof of concept for a novel scientific framework
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Conclusions

Conclusions and future work
@ This work is a proof of concept for a novel scientific framework

@ To fully illustrate it there is a need for experimental work. This will
undoubtedly require some tuning in model and theoretical results

@ The framework can be applied to other biological contexts. What
about bacteria? tradeoffs between efficiency and communication?

Thanks!
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Conclusions

Simplified proof (for a weaker version of the lower bound)

Lemma
If running time is o(log k - (D + D?/k)) then advice > 0.

Proof
@ Assume all agents start with the same data-structure no matter what is k
@ Assume running in time is (D + %2) - ¢(k) (and ¢(-) is non-decreasing).
l.e., the expected time to visit uis T, < (d(u, s) + d(”T’S)Z) - ¢(K).
@ Fix W (upper bound on # agents)

@ Structure of proof: we show that by time T =2W - (W), an ant is
expected to visit many nodes: = W - log(W). Since she can visit at most
one node in 1 time unit, it follows that we cannot have ¢(W) = o(log W)

v
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Conclusions

Simplified proof (cont.)

k; =22 ISil=wWk;

@ Fixi=1,2,---,°9" 1 and consider

Si={u|VvW- 2" <d(u,s) <VW-2'}. Note, |S;|~ W .2%
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Conclusions

Simplified proof (cont.)

k; =22 ISil=wWk;

@ Fixi=1,2,---,°9" 1 and consider

Si={u|VvW- 2" <d(u,s) <VW-2'}. Note, |S;|~ W .2%
@ Assume now that k; = 2%/, So, |Sj| ~ W - k;. Note that k; < W.
@ Moreover, k; =2*1.2-1 < /W .2"-1 l.e, ki < d(u,s),Yu € S.

@ Therefore,
2 2
Ty < (d(u,s) + 240)  o(k) < 2- 2% (k) < 2W - (W) = T.

29/30



Conclusions

Simplified proof (cont.)

@ So, probability of visiting u € S; by time 2T is at least 1/2.
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Conclusions

Simplified proof (cont.)

@ So, probability of visiting u € S; by time 2T is at least 1/2.

@ Thus, the expected number of nodes in S; that all agents visit by
time 2T is roughly |S;| = W - k;. Hence, the expected number of
nodes in S; that one agent visits by time 2T is |S;|/ki =~ W.

@ Observe, this holds Vi € [1,'98%).

30/30



Simplified proof (cont.)

@ So, probability of visiting u € S; by time 2T is at least 1/2.

@ Thus, the expected number of nodes in S; that all agents visit by
time 2T is roughly |S;| = W - k;. Hence, the expected number of
nodes in S; that one agent visits by time 2T is |S;|/ki =~ W.

@ Observe, this holds Vi € [1,'98%).

@ Hence, the expected number of nodes that a single agent visits by
time2T is~ W -logW. As T =~ W - ¢(W), this implies that we
cannot have ¢(W) = o(log W). O
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