
Distributed Computing on the (Fruit) Fly

Yuval Emek

Technion - Israel Institute of Technology

The 1st Workshop on Biological Distributed Algorithms
Jerusalem, October 2013

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 1 / 19

Synopsis

Distributed network algorithms

Mission: theory of distributed computing in biological cellular networks

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 2 / 19

Synopsis

Distributed network algorithms

Mission: theory of distributed computing in biological cellular networks

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 2 / 19

Synopsis

Distributed network algorithms

Mission: theory of distributed computing in biological cellular networks

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 2 / 19

Motivation

Selection of sensory organ precurser (SOP) cells = solving MIS
[Afek, Alon, Barad, Hornstein, Barkai, Bar-Joseph 11]

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 3 / 19

1 Cells as computing devices

2 Abstract distributed computing models

3 Networked finite state machines

4 Results
MIS algorithm

5 Conclusions

Local computation

Nucleus: analogous to central processing unit

Code = DNA (strings of nucleotides)

Instructions = genes (DNA substrings)

Execution = gene expression

transcribed to RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 4 / 19

Local computation

Nucleus: analogous to central processing unit

Code = DNA (strings of nucleotides)

Instructions = genes (DNA substrings)

Execution = gene expression

transcribed to RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 4 / 19

Local computation

Nucleus: analogous to central processing unit

Code = DNA (strings of nucleotides)

Instructions = genes (DNA substrings)

Execution = gene expression

transcribed to RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 4 / 19

Local computation

Nucleus: analogous to central processing unit

Code = DNA (strings of nucleotides)

Instructions = genes (DNA substrings)

Execution = gene expression

transcribed to RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 4 / 19

Local computation

Nucleus: analogous to central processing unit

Code = DNA (strings of nucleotides)

Instructions = genes (DNA substrings)

Execution = gene expression

transcribed to RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 4 / 19

Local computation

Nucleus: analogous to central processing unit

Code = DNA (strings of nucleotides)

Instructions = genes (DNA substrings)

Execution = gene expression

transcribed to RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 4 / 19

Local computation

Nucleus: analogous to central processing unit

Code = DNA (strings of nucleotides)

Instructions = genes (DNA substrings)

Execution = gene expression

transcribed to RNA molecules

Main question:
which genes are currently expressed?

Analogous to CPU’s current state

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 4 / 19

Communication

Juxtacrine (direct contact): respects network’s topology

Delivery of message m from cell x to cell y

1 x produces molecule m
2 m crosses from x to y

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside y

4 Modifies concentration levels in nucleus

5 Affects y ’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 5 / 19

Communication

Juxtacrine (direct contact): respects network’s topology

Delivery of message m from cell x to cell y

1 x produces molecule m
2 m crosses from x to y

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside y

4 Modifies concentration levels in nucleus

5 Affects y ’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 5 / 19

Communication

Juxtacrine (direct contact): respects network’s topology

Delivery of message m from cell x to cell y

1 x produces molecule m
2 m crosses from x to y

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside y

4 Modifies concentration levels in nucleus

5 Affects y ’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 5 / 19

Communication

Juxtacrine (direct contact): respects network’s topology

Delivery of message m from cell x to cell y

1 x produces molecule m

2 m crosses from x to y

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside y

4 Modifies concentration levels in nucleus

5 Affects y ’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 5 / 19

Communication

Juxtacrine (direct contact): respects network’s topology

Delivery of message m from cell x to cell y

1 x produces molecule m
2 m crosses from x to y

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside y

4 Modifies concentration levels in nucleus

5 Affects y ’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 5 / 19

Communication

Juxtacrine (direct contact): respects network’s topology

Delivery of message m from cell x to cell y

1 x produces molecule m
2 m crosses from x to y

gap junction connecting two
cytoplasms

binds to crossmembrane receptor

3 Triggers a signaling cascade inside y

4 Modifies concentration levels in nucleus

5 Affects y ’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 5 / 19

Communication

Juxtacrine (direct contact): respects network’s topology

Delivery of message m from cell x to cell y

1 x produces molecule m
2 m crosses from x to y

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside y

4 Modifies concentration levels in nucleus

5 Affects y ’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 5 / 19

Communication

Juxtacrine (direct contact): respects network’s topology

Delivery of message m from cell x to cell y

1 x produces molecule m
2 m crosses from x to y

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside y

4 Modifies concentration levels in nucleus

5 Affects y ’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 5 / 19

Communication

Juxtacrine (direct contact): respects network’s topology

Delivery of message m from cell x to cell y

1 x produces molecule m
2 m crosses from x to y

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside y

4 Modifies concentration levels in nucleus

5 Affects y ’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 5 / 19

Communication

Juxtacrine (direct contact): respects network’s topology

Delivery of message m from cell x to cell y

1 x produces molecule m
2 m crosses from x to y

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside y

4 Modifies concentration levels in nucleus

5 Affects y ’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 5 / 19

Communication

Juxtacrine (direct contact): respects network’s topology

Delivery of message m from cell x to cell y

1 x produces molecule m
2 m crosses from x to y

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside y

4 Modifies concentration levels in nucleus

5 Affects y ’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 5 / 19

Communication

Juxtacrine (direct contact): respects network’s topology

Delivery of message m from cell x to cell y

1 x produces molecule m
2 m crosses from x to y

gap junction connecting two
cytoplasms
binds to crossmembrane receptor

3 Triggers a signaling cascade inside y

4 Modifies concentration levels in nucleus

5 Affects y ’s gene expression

Gap junction/receptor = port

No sense of direction

all neighbors look the same

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 5 / 19

1 Cells as computing devices

2 Abstract distributed computing models

3 Networked finite state machines

4 Results
MIS algorithm

5 Conclusions

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation
Communication too strong

independent messages to/from each neighbor

message types grows with n

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 6 / 19

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

Communication too strong

independent messages to/from each neighbor

message types grows with n

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 6 / 19

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

Communication too strong

independent messages to/from each neighbor

message types grows with n

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 6 / 19

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

Communication too strong

independent messages to/from each neighbor

message types grows with n

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 6 / 19

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

Communication too strong

independent messages to/from each neighbor

message types grows with n

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 6 / 19

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

Communication too strong

independent messages to/from each neighbor

message types grows with n

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 6 / 19

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

Communication too strong

independent messages to/from each neighbor

message types grows with n

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 6 / 19

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

m1

m2

m3

m4

Communication too strong

independent messages to/from each neighbor

message types grows with n

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 6 / 19

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

m1

m2

m3

m4

Communication too strong

independent messages to/from each neighbor

message types grows with n

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 6 / 19

Message passing

Nodes act locally (don’t know global topology)

In each step, node v :

sends messages to N(v)

receives messages from N(v)

performs local computation

Communication too strong

independent messages to/from each neighbor

message types grows with n

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 6 / 19

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages = beeps (no information)

Node distinguishes 0 and ≥ 1 beeps

Local computation too strong �

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 7 / 19

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages = beeps (no information)

Node distinguishes 0 and ≥ 1 beeps

b

b
b

b

Local computation too strong �

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 7 / 19

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages = beeps (no information)

Node distinguishes 0 and ≥ 1 beeps

Local computation too strong �

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 7 / 19

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages = beeps (no information)

Node distinguishes 0 and ≥ 1 beeps b

b

Local computation too strong �

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 7 / 19

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages = beeps (no information)

Node distinguishes 0 and ≥ 1 beeps

Local computation too strong

�

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 7 / 19

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages = beeps (no information)

Node distinguishes 0 and ≥ 1 beeps

Local computation too strong

�

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 7 / 19

The beeping model

Introduced in [Cornejo, Kuhn 10]

Messages = beeps (no information)

Node distinguishes 0 and ≥ 1 beeps

Local computation too strong �

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 7 / 19

Finite state machines (a.k.a. automata)

A fixed collection of states

A fixed collection of input signals (a.k.a. alphabet)

state(t + 1)←− state(t), signal(t)

determined by transition function

Computational power�

Cell enzymes “programmed” to implement an FSM
[Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 8 / 19

Finite state machines (a.k.a. automata)

A fixed collection of states

A fixed collection of input signals (a.k.a. alphabet)

state(t + 1)←− state(t), signal(t)

determined by transition function

Computational power�

Cell enzymes “programmed” to implement an FSM
[Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 8 / 19

Finite state machines (a.k.a. automata)

A fixed collection of states

A fixed collection of input signals (a.k.a. alphabet)

state(t + 1)←− state(t), signal(t)

determined by transition function

Computational power�

Cell enzymes “programmed” to implement an FSM
[Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 8 / 19

Finite state machines (a.k.a. automata)

A fixed collection of states

A fixed collection of input signals (a.k.a. alphabet)

state(t + 1)←− state(t), signal(t)

determined by transition function

Computational power�

Cell enzymes “programmed” to implement an FSM
[Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 8 / 19

Finite state machines (a.k.a. automata)

A fixed collection of states

A fixed collection of input signals (a.k.a. alphabet)

state(t + 1)←− state(t), signal(t)

determined by transition function

Computational power�

Cell enzymes “programmed” to implement an FSM
[Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 8 / 19

Finite state machines (a.k.a. automata)

A fixed collection of states

A fixed collection of input signals (a.k.a. alphabet)

state(t + 1)←− state(t), signal(t)

determined by transition function

Computational power�

Cell enzymes “programmed” to implement an FSM
[Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 8 / 19

Finite state machines (a.k.a. automata)

A fixed collection of states

A fixed collection of input signals (a.k.a. alphabet)

state(t + 1)←− state(t), signal(t)

determined by transition function

Computational power�

Cell enzymes “programmed” to implement an FSM
[Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 8 / 19

Finite state machines (a.k.a. automata)

A fixed collection of states

A fixed collection of input signals (a.k.a. alphabet)

state(t + 1)←− state(t), signal(t)

determined by transition function

Computational power�

Cell enzymes “programmed” to implement an FSM
[Benenson, Paz-Elizur, Adar, Keinan, Livneh, Shapiro 01]

Perhaps we should aim for a network of FSMs?

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 8 / 19

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics Biological processes

Highly regular topology

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 9 / 19

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics Biological processes

Highly regular topology

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 9 / 19

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics Biological processes

Highly regular topology

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 9 / 19

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics Biological processes

Highly regular topology

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 9 / 19

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics Biological processes

Highly regular topology

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 9 / 19

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life

Digital physics Biological processes

Highly regular topology

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 9 / 19

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics

Biological processes

Highly regular topology

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 9 / 19

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics Biological processes

Highly regular topology

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 9 / 19

Cellular automata

Infinite grid of FSMs

qx ,y (t + 1)←− qx ,y (t), {qx ′,y ′(t) : grid neighbors (x ′, y ′)}

Typical question: How an initial (finite) configuration evolves?

Invented by (crystal growth, self-replicating systems)

Game of life Digital physics Biological processes

Highly regular topology

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 9 / 19

1 Cells as computing devices

2 Abstract distributed computing models

3 Networked finite state machines

4 Results
MIS algorithm

5 Conclusions

nFSM

Every node is a FSM

Communication based on transmissions:
same message delivered to all neighbors

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|deg(u)

Should be fixed in a FSM!

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 10 / 19

nFSM

Every node is a FSM

Communication based on transmissions:
same message delivered to all neighbors

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|deg(u)

Should be fixed in a FSM!

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 10 / 19

nFSM

Every node is a FSM

Communication based on transmissions:
same message delivered to all neighbors

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|deg(u)

Should be fixed in a FSM!

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 10 / 19

nFSM

Every node is a FSM

Communication based on transmissions:
same message delivered to all neighbors

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|deg(u)

Should be fixed in a FSM!

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 10 / 19

nFSM

Every node is a FSM

Communication based on transmissions:
same message delivered to all neighbors

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|deg(u)

Should be fixed in a FSM!

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 10 / 19

nFSM

Every node is a FSM

Communication based on transmissions:
same message delivered to all neighbors

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|deg(u)

Should be fixed in a FSM!

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 10 / 19

nFSM

Every node is a FSM

Communication based on transmissions:
same message delivered to all neighbors

Message is a letter in a constant-size communication alphabet Σ

Node u has a port corresponding to each v ∈ N(u)

Stores the last message σ ∈ Σ delivered from v

In each step, u decides on next state and which letter to transmit
based on its current state and letters currently stored in its ports

Problem:

possible signals = # port configurations = |Σ|deg(u)

Should be fixed in a FSM!

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 10 / 19

The one-two-many principle

Node u cares only about the number πσ of appearances of each
σ ∈ Σ in its ports (currently)

possible signals =
(deg(u)+|Σ|−1

|Σ|−1

)
= poly(deg(u))

πσ calculated by the one-two-many principle:

isolated cultures developed counting systems that don’t go beyond 2

Warlpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the algorithm)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b
possible signals = (b + 1)|Σ|

FSM’s transition function: δ : Q × {0, 1, . . . , b}Σ → Q × Σ

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 11 / 19

The one-two-many principle

Node u cares only about the number πσ of appearances of each
σ ∈ Σ in its ports (currently)

possible signals =
(deg(u)+|Σ|−1

|Σ|−1

)
= poly(deg(u))

πσ calculated by the one-two-many principle:

isolated cultures developed counting systems that don’t go beyond 2

Warlpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the algorithm)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b
possible signals = (b + 1)|Σ|

FSM’s transition function: δ : Q × {0, 1, . . . , b}Σ → Q × Σ

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 11 / 19

The one-two-many principle

Node u cares only about the number πσ of appearances of each
σ ∈ Σ in its ports (currently)

possible signals =
(deg(u)+|Σ|−1

|Σ|−1

)
= poly(deg(u))

πσ calculated by the one-two-many principle:

isolated cultures developed counting systems that don’t go beyond 2

Warlpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the algorithm)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b
possible signals = (b + 1)|Σ|

FSM’s transition function: δ : Q × {0, 1, . . . , b}Σ → Q × Σ

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 11 / 19

The one-two-many principle

Node u cares only about the number πσ of appearances of each
σ ∈ Σ in its ports (currently)

possible signals =
(deg(u)+|Σ|−1

|Σ|−1

)
= poly(deg(u))

πσ calculated by the one-two-many principle:
isolated cultures developed counting systems that don’t go beyond 2

Warlpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the algorithm)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b
possible signals = (b + 1)|Σ|

FSM’s transition function: δ : Q × {0, 1, . . . , b}Σ → Q × Σ

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 11 / 19

The one-two-many principle

Node u cares only about the number πσ of appearances of each
σ ∈ Σ in its ports (currently)

possible signals =
(deg(u)+|Σ|−1

|Σ|−1

)
= poly(deg(u))

πσ calculated by the one-two-many principle:
isolated cultures developed counting systems that don’t go beyond 2

Warlpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the algorithm)

u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b
possible signals = (b + 1)|Σ|

FSM’s transition function: δ : Q × {0, 1, . . . , b}Σ → Q × Σ

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 11 / 19

The one-two-many principle

Node u cares only about the number πσ of appearances of each
σ ∈ Σ in its ports (currently)

possible signals =
(deg(u)+|Σ|−1

|Σ|−1

)
= poly(deg(u))

πσ calculated by the one-two-many principle:
isolated cultures developed counting systems that don’t go beyond 2

Warlpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the algorithm)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b

possible signals = (b + 1)|Σ|

FSM’s transition function: δ : Q × {0, 1, . . . , b}Σ → Q × Σ

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 11 / 19

The one-two-many principle

Node u cares only about the number πσ of appearances of each
σ ∈ Σ in its ports (currently)

possible signals =
(deg(u)+|Σ|−1

|Σ|−1

)
= poly(deg(u))

πσ calculated by the one-two-many principle:
isolated cultures developed counting systems that don’t go beyond 2

Warlpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the algorithm)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b
possible signals = (b + 1)|Σ|

FSM’s transition function: δ : Q × {0, 1, . . . , b}Σ → Q × Σ

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 11 / 19

The one-two-many principle

Node u cares only about the number πσ of appearances of each
σ ∈ Σ in its ports (currently)

possible signals =
(deg(u)+|Σ|−1

|Σ|−1

)
= poly(deg(u))

πσ calculated by the one-two-many principle:
isolated cultures developed counting systems that don’t go beyond 2

Warlpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the algorithm)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b
possible signals = (b + 1)|Σ|

FSM’s transition function: δ : Q × {0, 1, . . . , b}Σ → Q × Σ

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 11 / 19

The one-two-many principle

Node u cares only about the number πσ of appearances of each
σ ∈ Σ in its ports (currently)

possible signals =
(deg(u)+|Σ|−1

|Σ|−1

)
= poly(deg(u))

πσ calculated by the one-two-many principle:
isolated cultures developed counting systems that don’t go beyond 2

Warlpiri (Australia) Piraha (the Amazon)

Constant bounding parameter b ∈ Z>0 (property of the algorithm)
u can distinguish between πσ = 0, 1, . . . , b − 1, or πσ ≥ b
possible signals = (b + 1)|Σ|

FSM’s transition function: δ : Q × {0, 1, . . . , b}Σ → 2Q×Σ

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 11 / 19

Crux of the model

Applicable to arbitrary network topologies

Nodes run the same (randomized) protocol

All parameters of the protocol are constants, independent of any
feature of the input graph (including deg(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b}|Σ| → 2Q×Σ

A genuine FSM!

Fully asynchronous environment

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 12 / 19

Crux of the model

Applicable to arbitrary network topologies

Nodes run the same (randomized) protocol

All parameters of the protocol are constants, independent of any
feature of the input graph (including deg(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b}|Σ| → 2Q×Σ

A genuine FSM!

Fully asynchronous environment

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 12 / 19

Crux of the model

Applicable to arbitrary network topologies

Nodes run the same (randomized) protocol

All parameters of the protocol are constants, independent of any
feature of the input graph (including deg(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b}|Σ| → 2Q×Σ

A genuine FSM!

Fully asynchronous environment

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 12 / 19

Crux of the model

Applicable to arbitrary network topologies

Nodes run the same (randomized) protocol

All parameters of the protocol are constants, independent of any
feature of the input graph (including deg(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b}|Σ| → 2Q×Σ

A genuine FSM!

Fully asynchronous environment

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 12 / 19

Crux of the model

Applicable to arbitrary network topologies

Nodes run the same (randomized) protocol

All parameters of the protocol are constants, independent of any
feature of the input graph (including deg(u)):

number of states

size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b}|Σ| → 2Q×Σ

A genuine FSM!

Fully asynchronous environment

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 12 / 19

Crux of the model

Applicable to arbitrary network topologies

Nodes run the same (randomized) protocol

All parameters of the protocol are constants, independent of any
feature of the input graph (including deg(u)):

number of states
size of alphabet Σ

bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b}|Σ| → 2Q×Σ

A genuine FSM!

Fully asynchronous environment

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 12 / 19

Crux of the model

Applicable to arbitrary network topologies

Nodes run the same (randomized) protocol

All parameters of the protocol are constants, independent of any
feature of the input graph (including deg(u)):

number of states
size of alphabet Σ
bounding parameter b

size of the description of δ : Q × {0, 1, . . . , b}|Σ| → 2Q×Σ

A genuine FSM!

Fully asynchronous environment

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 12 / 19

Crux of the model

Applicable to arbitrary network topologies

Nodes run the same (randomized) protocol

All parameters of the protocol are constants, independent of any
feature of the input graph (including deg(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b}|Σ| → 2Q×Σ

A genuine FSM!

Fully asynchronous environment

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 12 / 19

Crux of the model

Applicable to arbitrary network topologies

Nodes run the same (randomized) protocol

All parameters of the protocol are constants, independent of any
feature of the input graph (including deg(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b}|Σ| → 2Q×Σ

A genuine FSM!

Fully asynchronous environment

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 12 / 19

Crux of the model

Applicable to arbitrary network topologies

Nodes run the same (randomized) protocol

All parameters of the protocol are constants, independent of any
feature of the input graph (including deg(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b}|Σ| → 2Q×Σ

A genuine FSM!

Fully asynchronous environment

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 12 / 19

Crux of the model

Applicable to arbitrary network topologies

Nodes run the same (randomized) protocol

All parameters of the protocol are constants, independent of any
feature of the input graph (including deg(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b}|Σ| → 2Q×Σ

A genuine FSM!

Fully asynchronous environment

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 12 / 19

Crux of the model

Applicable to arbitrary network topologies

Nodes run the same (randomized) protocol

All parameters of the protocol are constants, independent of any
feature of the input graph (including deg(u)):

number of states
size of alphabet Σ
bounding parameter b
size of the description of δ : Q × {0, 1, . . . , b}|Σ| → 2Q×Σ

A genuine FSM!

Fully asynchronous environment

The biological angle:

one-two-many counting =
discrete analogue for detecting different concentration levels

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 12 / 19

1 Cells as computing devices

2 Abstract distributed computing models

3 Networked finite state machines

4 Results
MIS algorithm

5 Conclusions

Performance measure

Run-time:

time units until all nodes terminate

Efficient algorithm = logO(1) n run-time [Linial 92]

Las Vegas algorithms, irrevocable output

Run-time bounds hold in expectation and w.h.p.

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 13 / 19

Performance measure

Run-time:

time units until all nodes terminate

Efficient algorithm = logO(1) n run-time [Linial 92]

Las Vegas algorithms, irrevocable output

Run-time bounds hold in expectation and w.h.p.

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 13 / 19

Performance measure

Run-time:

time units until all nodes terminate

Efficient algorithm = logO(1) n run-time [Linial 92]

Las Vegas algorithms, irrevocable output

Run-time bounds hold in expectation and w.h.p.

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 13 / 19

Performance measure

Run-time:

time units until all nodes terminate

Efficient algorithm = logO(1) n run-time [Linial 92]

Las Vegas algorithms, irrevocable output

Run-time bounds hold in expectation and w.h.p.

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 13 / 19

Efficient algorithms

Maximal Independent Set in arbitrary graphs

run-time = O(log2 n)

Maximal 2-hop Independent Set in arbitrary graphs

run-time = O(log2 n)

Coloring bounded degree graphs with ∆ + 1 colors

run-time = O(log n)

2-hop Coloring bounded degree graphs with ∆2 + 1 colors

run-time = O(log n)

Coloring arbitrary trees with 3 colors

run-time = O(log n)

Maximal Matching in arbitrary graphs (small model modification)

run-time = O(log2 n)

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 14 / 19

Efficient algorithms

Maximal Independent Set in arbitrary graphs

run-time = O(log2 n)

Maximal 2-hop Independent Set in arbitrary graphs

run-time = O(log2 n)

Coloring bounded degree graphs with ∆ + 1 colors

run-time = O(log n)

2-hop Coloring bounded degree graphs with ∆2 + 1 colors

run-time = O(log n)

Coloring arbitrary trees with 3 colors

run-time = O(log n)

Maximal Matching in arbitrary graphs (small model modification)

run-time = O(log2 n)

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 14 / 19

Efficient algorithms

Maximal Independent Set in arbitrary graphs

run-time = O(log2 n)

Maximal 2-hop Independent Set in arbitrary graphs

run-time = O(log2 n)

Coloring bounded degree graphs with ∆ + 1 colors

run-time = O(log n)

2-hop Coloring bounded degree graphs with ∆2 + 1 colors

run-time = O(log n)

Coloring arbitrary trees with 3 colors

run-time = O(log n)

Maximal Matching in arbitrary graphs (small model modification)

run-time = O(log2 n)

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 14 / 19

Efficient algorithms

Maximal Independent Set in arbitrary graphs

run-time = O(log2 n)

Maximal 2-hop Independent Set in arbitrary graphs

run-time = O(log2 n)

Coloring bounded degree graphs with ∆ + 1 colors

run-time = O(log n)

2-hop Coloring bounded degree graphs with ∆2 + 1 colors

run-time = O(log n)

Coloring arbitrary trees with 3 colors

run-time = O(log n)

Maximal Matching in arbitrary graphs (small model modification)

run-time = O(log2 n)

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 14 / 19

Efficient algorithms

Maximal Independent Set in arbitrary graphs

run-time = O(log2 n)

Maximal 2-hop Independent Set in arbitrary graphs

run-time = O(log2 n)

Coloring bounded degree graphs with ∆ + 1 colors

run-time = O(log n)

2-hop Coloring bounded degree graphs with ∆2 + 1 colors

run-time = O(log n)

Coloring arbitrary trees with 3 colors

run-time = O(log n)

Maximal Matching in arbitrary graphs (small model modification)

run-time = O(log2 n)

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 14 / 19

Efficient algorithms

Maximal Independent Set in arbitrary graphs

run-time = O(log2 n)

Maximal 2-hop Independent Set in arbitrary graphs

run-time = O(log2 n)

Coloring bounded degree graphs with ∆ + 1 colors

run-time = O(log n)

2-hop Coloring bounded degree graphs with ∆2 + 1 colors

run-time = O(log n)

Coloring arbitrary trees with 3 colors

run-time = O(log n)

Maximal Matching in arbitrary graphs (small model modification)

run-time = O(log2 n)

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 14 / 19

Efficient algorithms

Maximal Independent Set in arbitrary graphs

run-time = O(log2 n)

Maximal 2-hop Independent Set in arbitrary graphs

run-time = O(log2 n)

Coloring bounded degree graphs with ∆ + 1 colors

run-time = O(log n)

2-hop Coloring bounded degree graphs with ∆2 + 1 colors

run-time = O(log n)

Coloring arbitrary trees with 3 colors

run-time = O(log n)

Maximal Matching in arbitrary graphs (small model modification)

run-time = O(log2 n)

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 14 / 19

Additional general results

Theorem (Synchronizer)

Every nFSM algorithm designed to operate in a synchronous environment
can be simulated in an asynchronous environment with a constant
multiplicative run-time overhead.

Theorem (Computability)

In terms of their computational power, nFSM algorithms are (almost)
equivalent to randomized linear-space Turing machines.

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 15 / 19

1 Cells as computing devices

2 Abstract distributed computing models

3 Networked finite state machines

4 Results
MIS algorithm

5 Conclusions

The MIS problem

Independent set: set of nodes with no neighbors

maximal independent set (MIS): cannot be extended

The MIS problem:
input: (arbitrary) network
output: MIS

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 16 / 19

The MIS problem

Independent set: set of nodes with no neighbors

maximal independent set (MIS): cannot be extended

The MIS problem:
input: (arbitrary) network
output: MIS

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 16 / 19

The MIS problem

Independent set: set of nodes with no neighbors

maximal independent set (MIS): cannot be extended

The MIS problem:
input: (arbitrary) network
output: MIS

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 16 / 19

The MIS problem

Independent set: set of nodes with no neighbors

maximal independent set (MIS): cannot be extended

The MIS problem:
input: (arbitrary) network
output: MIS

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 16 / 19

MIS under nFSM — difficulties

Existing MIS algorithms rely on grouping steps into phases:
u competes with N(u) over joining the MIS

Require either

calculations with super-constant variables
independent communication with each neighbor
messages of logarithmic size

Idea: transmit O(1) bits per step

logarithmically long phases

Problem:

u must count the steps in a phase (deciding when it ends)
phases must be aligned to guarantee fair competition

How can we decide if u joins MIS without long aligned phases?

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 17 / 19

MIS under nFSM — difficulties

Existing MIS algorithms rely on grouping steps into phases:
u competes with N(u) over joining the MIS

Require either

calculations with super-constant variables
independent communication with each neighbor
messages of logarithmic size

Idea: transmit O(1) bits per step

logarithmically long phases

Problem:

u must count the steps in a phase (deciding when it ends)
phases must be aligned to guarantee fair competition

How can we decide if u joins MIS without long aligned phases?

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 17 / 19

MIS under nFSM — difficulties

Existing MIS algorithms rely on grouping steps into phases:
u competes with N(u) over joining the MIS

Require either

calculations with super-constant variables
independent communication with each neighbor
messages of logarithmic size

Idea: transmit O(1) bits per step

logarithmically long phases

Problem:

u must count the steps in a phase (deciding when it ends)
phases must be aligned to guarantee fair competition

How can we decide if u joins MIS without long aligned phases?

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 17 / 19

MIS under nFSM — difficulties

Existing MIS algorithms rely on grouping steps into phases:
u competes with N(u) over joining the MIS

Require either

calculations with super-constant variables
independent communication with each neighbor
messages of logarithmic size

Idea: transmit O(1) bits per step

logarithmically long phases

Problem:

u must count the steps in a phase (deciding when it ends)
phases must be aligned to guarantee fair competition

How can we decide if u joins MIS without long aligned phases?

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 17 / 19

MIS under nFSM — difficulties

Existing MIS algorithms rely on grouping steps into phases:
u competes with N(u) over joining the MIS

Require either

calculations with super-constant variables
independent communication with each neighbor
messages of logarithmic size

Idea: transmit O(1) bits per step

logarithmically long phases

Problem:

u must count the steps in a phase (deciding when it ends)

phases must be aligned to guarantee fair competition

How can we decide if u joins MIS without long aligned phases?

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 17 / 19

MIS under nFSM — difficulties

Existing MIS algorithms rely on grouping steps into phases:
u competes with N(u) over joining the MIS

Require either

calculations with super-constant variables
independent communication with each neighbor
messages of logarithmic size

Idea: transmit O(1) bits per step

logarithmically long phases

Problem:

u must count the steps in a phase (deciding when it ends)
phases must be aligned to guarantee fair competition

How can we decide if u joins MIS without long aligned phases?

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 17 / 19

MIS under nFSM — difficulties

Existing MIS algorithms rely on grouping steps into phases:
u competes with N(u) over joining the MIS

Require either

calculations with super-constant variables
independent communication with each neighbor
messages of logarithmic size

Idea: transmit O(1) bits per step

logarithmically long phases

Problem:

u must count the steps in a phase (deciding when it ends)
phases must be aligned to guarantee fair competition

How can we decide if u joins MIS without long aligned phases?

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 17 / 19

MIS under nFSM — solution

D1 U0

U1

U2

D2 LW
u0 = u1 = 0

u0, u1 ≥ 1

u 1
=
u 2

=
0 u

1 , u
2 ≥

1

u
0

=
u

2
=

0 u 0
, u

2
≥

1

w = 0

w ≥ 1

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 18 / 19

MIS under nFSM — solution

Relax requirement that phase is aligned and of predetermined length

Tournament:

length determined probabilistically
“softly” aligned
maintained under nFSM

Prove:
1 Amortized length of a tournament is O(log n) w.h.p.

2 Guarantee fair competition =⇒
const fraction of the edges is removed with const probability =⇒
O(log n) tournaments w.h.p.

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 18 / 19

MIS under nFSM — solution

Relax requirement that phase is aligned and of predetermined length

Tournament:

length determined probabilistically
“softly” aligned
maintained under nFSM

Prove:
1 Amortized length of a tournament is O(log n) w.h.p.

2 Guarantee fair competition =⇒
const fraction of the edges is removed with const probability =⇒
O(log n) tournaments w.h.p.

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 18 / 19

MIS under nFSM — solution

Relax requirement that phase is aligned and of predetermined length

Tournament:

length determined probabilistically
“softly” aligned
maintained under nFSM

Prove:
1 Amortized length of a tournament is O(log n) w.h.p.

2 Guarantee fair competition =⇒
const fraction of the edges is removed with const probability =⇒
O(log n) tournaments w.h.p.

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 18 / 19

MIS under nFSM — solution

Relax requirement that phase is aligned and of predetermined length

Tournament:

length determined probabilistically
“softly” aligned
maintained under nFSM

Prove:
1 Amortized length of a tournament is O(log n) w.h.p.
2 Guarantee fair competition =⇒

const fraction of the edges is removed with const probability =⇒
O(log n) tournaments w.h.p.

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 18 / 19

1 Cells as computing devices

2 Abstract distributed computing models

3 Networked finite state machines

4 Results
MIS algorithm

5 Conclusions

Summary

Abstract model for network of FSMs

Fundamental DC problems admit efficient algorithms

Suitable to biological cellular networks

Local computation, communication, asynchrony
Also networks of man made nano-devices

Another model: population protocols (pairwise interactions, eventual
correctness)

Reasonable constants (MIS: |Q| = |Σ| = 7, b = 1)

Open problem: dynamic environment

Joint research project with Jara Uitto and Roger Wattenhofer

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 19 / 19

Summary

Abstract model for network of FSMs

Fundamental DC problems admit efficient algorithms

Suitable to biological cellular networks

Local computation, communication, asynchrony
Also networks of man made nano-devices

Another model: population protocols (pairwise interactions, eventual
correctness)

Reasonable constants (MIS: |Q| = |Σ| = 7, b = 1)

Open problem: dynamic environment

Joint research project with Jara Uitto and Roger Wattenhofer

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 19 / 19

Summary

Abstract model for network of FSMs

Fundamental DC problems admit efficient algorithms

Suitable to biological cellular networks

Local computation, communication, asynchrony

Also networks of man made nano-devices

Another model: population protocols (pairwise interactions, eventual
correctness)

Reasonable constants (MIS: |Q| = |Σ| = 7, b = 1)

Open problem: dynamic environment

Joint research project with Jara Uitto and Roger Wattenhofer

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 19 / 19

Summary

Abstract model for network of FSMs

Fundamental DC problems admit efficient algorithms

Suitable to biological cellular networks

Local computation, communication, asynchrony
Also networks of man made nano-devices

Another model: population protocols (pairwise interactions, eventual
correctness)

Reasonable constants (MIS: |Q| = |Σ| = 7, b = 1)

Open problem: dynamic environment

Joint research project with Jara Uitto and Roger Wattenhofer

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 19 / 19

Summary

Abstract model for network of FSMs

Fundamental DC problems admit efficient algorithms

Suitable to biological cellular networks

Local computation, communication, asynchrony
Also networks of man made nano-devices

Another model: population protocols (pairwise interactions, eventual
correctness)

Reasonable constants (MIS: |Q| = |Σ| = 7, b = 1)

Open problem: dynamic environment

Joint research project with Jara Uitto and Roger Wattenhofer

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 19 / 19

Summary

Abstract model for network of FSMs

Fundamental DC problems admit efficient algorithms

Suitable to biological cellular networks

Local computation, communication, asynchrony
Also networks of man made nano-devices

Another model: population protocols (pairwise interactions, eventual
correctness)

Reasonable constants (MIS: |Q| = |Σ| = 7, b = 1)

Open problem: dynamic environment

Joint research project with Jara Uitto and Roger Wattenhofer

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 19 / 19

Summary

Abstract model for network of FSMs

Fundamental DC problems admit efficient algorithms

Suitable to biological cellular networks

Local computation, communication, asynchrony
Also networks of man made nano-devices

Another model: population protocols (pairwise interactions, eventual
correctness)

Reasonable constants (MIS: |Q| = |Σ| = 7, b = 1)

Open problem: dynamic environment

Joint research project with Jara Uitto and Roger Wattenhofer

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 19 / 19

Summary

Abstract model for network of FSMs

Fundamental DC problems admit efficient algorithms

Suitable to biological cellular networks

Local computation, communication, asynchrony
Also networks of man made nano-devices

Another model: population protocols (pairwise interactions, eventual
correctness)

Reasonable constants (MIS: |Q| = |Σ| = 7, b = 1)

Open problem: dynamic environment

Joint research project with Jara Uitto and Roger Wattenhofer

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 19 / 19

Summary

Abstract model for network of FSMs

Fundamental DC problems admit efficient algorithms

Suitable to biological cellular networks

Local computation, communication, asynchrony
Also networks of man made nano-devices

Another model: population protocols (pairwise interactions, eventual
correctness)

Reasonable constants (MIS: |Q| = |Σ| = 7, b = 1)

Open problem: dynamic environment

Joint research project with Jara Uitto and Roger Wattenhofer

Yuval Emek (Technion) Distributed Computing on the (Fruit) Fly BDA 2013 19 / 19

	Cells as computing devices
	Abstract distributed computing models
	Networked finite state machines
	Results
	MIS algorithm

	Conclusions

