Distributed Computation of
Large-scale Graph Problems

Peter Robinson

Joint work with:

Hartmut Klauck (NTU)
Danupon Nanongkai (KTH)
Gopal Pandurangan (UH)
Michele Scquizzato (UH)

Large-scale Graph Data

= Web graph, social networks

Large Graphs

" Transportation networks

Too big to be processed by single commodity
machine.

Important
Problems

Handling Large Graphs

Approach 1:
Buy more powerful hardware.

Approach 2:
Build distributed system
out of cheaper machines.

{Fa/ﬁtolerant} Scalable

Distributed Large Graph Processing

Large Graph Distributed System

Communication by b
message passing.

Partitioning the Input Graph

(Fundamental Question: |
How does the running time scale with k ?

Input Data (Graph) Actual Network

n vertices, m edges k i '

[Woodruff,Zhang’13]
Worst case edge
partitioning.

Random Vertex
Common practice Pa rtitioning
(e.g. Pregel) 7

Designing algorithms for large graphs

&—n =

Vertex-Centric Model: Machine-Centric Model:

= Vertices “run” algorithm; = Machines run algorithm;
write code for vertex. write code for machine.

" |nput graph = network. " |nput graph = input data;

= C(Classic distributed model network = k-clique

Systems for Large Graphs

Pregel & Apache Giraph
= \ertex-centric

" Synchronous message
passing

PowerGraph
" Edge-centric model
= Suitable for power-law

graphs
GraphlLab IBM Giraph++
= Vertex-centric " Extension of Giraph
= Shared memory abstraction ®* machine-centric
= Asynchronous computation

This talk: Message passing model; vertex/machine-centric

Roadmap (

 First some preliminaries... }

Algorithms
Graph Verification Constructing Trees
Connectivity testing BFS Tree, MST
PageRank

Lower Bound Techniques

Communication Information
Complexity Theory

The Distributed k-Machine Model

k physical machines running
synchronous distributed algorithm

Point-to-point message passing
over communication links

Link bandwidth: O(log n) bits per round "045

Each machine holds part of large
n-node input graph.

Machines have local view and
no shared memory.

Properties of Random Vertex Partitioning

Network:
k machines

Input Graph:
n vertices, m edges

M Ais max degree
= 1P of input graph

T NG

O(n/k) vertices per O(m/k? + AJk)
machine whp; edges per link whp;

- Vertices per machine = Edges per link are
are balanced. balanced.

Designing Algorithms in k-Machine Model

Vertices “run” algorithm:

Trivial Algo: Aggre jnput graph = distributed network N

Takes

Wealth of algorithms for vertex-centric model.

Simulating Vertex-Centric Algorithms

Suppose we have algorithm for vertex-centric model.

Idea: In k-machine model, Each machine simulates

simulate algorithm on execution on its vertices.
input graph.

u Y
Simulating Message Passing: < e
When u sendsP>] to v:
Machine M, sends msg M, M,

(u,v, <)) to M,

Simulating Vertex-Centric Algorithms

Performance Measures in Vertex-Centric (VC) Model:
" Message Complexity: M

= Time Complexity: T

= Communication Degree: A’

~
At most A’ messages

sent/rcvd per vertex per
round

Conversion Theorem —Part 1

Simulation of vertex-centric algorithm in k-machine

= /
model takes O(I/g | Tf) rounds.

Efficient algorithm = Efficient algorithm
in VC-model in k-machine model

Proof Idea of Conversion Theorem

Conversion Theorem —Part 1

Simulation of vertex-centric algorithm in k-machine

~ /
model takes O(/’g Tf) rounds.

Recall: Random Vertex Partitioning
— Edges per link are balanced.
—> In round r, activated edges A,
per link are balanced too!

Simulating 1 round takes O ('Z‘;' +

[+ 4 | A

kK) ‘ges per Iink.)

Total time: O (ZIT:l (lli‘—zr‘ -+ %))

Roadmap

Algorithms
Graph Verification Constructing Trees
Connectivity testing BFS Tree, MIST
PageRank

Lower Bound Techniques

Communication Information
Complexity Theory

Application: Constructing BFS Tree

Goal: BFS tree rooted at source node

Vertex-Centric Algorithm:

Application: Constructing BFS Tree

Goal: BFS tree rooted at source node

Vertex-Centric Algorithm:

Application: Constructing BFS Tree

Performance in Vertex-Centric Model:

" Message complexity: 2m
" Time complexity: diameter 2D
= Communication degree: < A

Performance in k-Machine Model:

> O(m/k* + DA /k)

Conversion Theorem —Part 1

Simulation of vertex-centric algorithm in k-machine

~ /
model takes O(/'g | Tf) rounds.

Our simulation so far:
For each simulated message, we instruct machine to
send message.

UE [V
= -
w

Bandwidth restriction of links is bottleneck.

Not necessary for broadcast algorithms! B =

Can we get better bounds for broadcast algorithms?

Simulating Broadcast Algorithms

u
|iW3/ M,
Ml
L=
M;
Suppose vertex u broadcasts in some round.

= M, sends (u,B) to M,, M,.
= M,, M, deliver X to all local neighbors of u.

- Simulating 1 broadcast requires < k— 1 messages.

The Conversion Theorem - Part 2

Performance Measures of Broadcast Algorithms:
= Time Complexity T: running time in vertex-centric model
" Broadcast Complexity B: number of broadcasts

Conversion Theorem — Part 2

Simulation of vertex-centric broadcast algorithm in k-
machine model takes O(7 + T) rounds.

Intuition: O(n/k) vertices per machine whp.
— Same is true for number of broadcasts B.

Application: Minimum Spanning Tree

~~~~~
~

Input graph has edge weights. s

S TS,

O(log n) time algorithm known ‘\»Q% *,Qa

in vertex-centric clique model. 'oo 3 1 6

Pretend input graph is clique: Xé”w"’é'"\/;
- add eo-weight edges. R =

Vertex-Centric MST Algorithm:

Initially: every vertex is fragment.
While >1 fragment do:
1. Vertices compute minimum weight outgoing
edge (MWOE) of their fragments by
2. Add MWOEs to MST.

3. Merge fragments along MWOEs.



Application: Minimum Spanning Tree

Broadcast Complexity?

Vertices find next outgoing edge of their fragment
by broadcasting twice.

" Merging doubles size of fragments.
- O(log n) iterations.

* Total number of broadcasts B = O(n log n).

Conversion Theorem — Part 2

Simulation of vertex-centric broadcast algorithm in
machine model takes O(2 + T) rounds.

- In machine model: 5(”'7{‘3” + logn) = O(n/k)



Roadmap

Algorithms
Graph Verification Constructing Trees
Connectivity testing Y BFS Tree, MST
PageRank

Lower Bound Techniques

Communication Information
Complexity Theory



Distributed Graph Verification

Goal: Distributed testing of graph properties

Machines must output common
answer: “Yes” or “No”. ﬁ

Graph Connectivity:

Output “Yes” iff input graph is connected. ;ﬁ) ﬁ



First Attempt: Verification in O(n/k)

Is input graph connected?

1. Assigh o= to missing edges.

2. Compute MST.

3. Connected <> MST has finite weight.



Faster Connectivity Testing?

So far: Connectivity testing in O(n/k) rounds based
on vertex-centric MST algorithm.

| N
. >
P\

O
‘\ 4 ‘\ D
0 O
n_w » " 420
| 2 Re \
AN ‘ ‘
| X E——
| S -‘ v\ \‘ Q 0
e _u = o Q) ©

Doesn’t take advantage of k-clique
topology.

Can we design faster machine-centric algorithms?



Faster Connectivity Testing

O(n/k?)-Time Algorithm
Initially: each vertex is component.
Repeat O(log n) times:

" For each component find outgoing
edge to other component. Similar to

= Merge components into MST alg.
larger components.

Breaking O(n/k) barrier requires new techniques...
Can we get low A L

messages complexity

_per machine? )

Can we merge components
efficiently?




Faster Connectivity Testing

O(n/k?)-Time Algorithm
Initially: each vertex is component.
Repeat O(log n) times:

" For each component find outgoing
edge to other component.

= Merge components into
larger components.

"Can we get low
messages complexity
_per machine? y




Finding Outgoing Edges of Components

Finding outgoing edge
is easy initially.
Difficult once we have
large components.

How much information
~| do we need to find bridge?

k...
nent.
ck into component.

If machine needs O(n) information: takes O(n/k) rounds.

Finding the
Worst case:

Machines have only
local knowledge!

Can we avoid learning about all component members?



Graph Sketches to the Rescue

Sketch of left component: s =sy,+s;+5;+S.+5,+54+5,,+S,,
— Sample returned by s is bridge edge.

We only need O(poly log n) bits to find bridge!

Machines locally compute sketches for their vertices
- O(n poly log n) messages in total.



Fast Communication via Random Proxies

Sketches provide overa| chosen by shared hash [exity but
load per machine can b{ function

Single component split across several

machines into component parts. | O
For each component: B'f‘O
Choose “almost” random A

machine as proxy.

Each machine can send sketch for each
component part to proxy in O(n/k?) rounds.

Intuition: Random choice of proxies ensures all k? links are
used equally. No dependence on graph topology.



Faster Connectivity Testing

O(n/k?)-Time Algorithm
Initially: each vertex is component.
Repeat O(log n) times:

" For each component find outgoing
edge to other component.

= Merge components into
larger components.

messages complexity

"Can we get low A L
per machine? )

Can we merge components
efficiently?




Merging Components

Each component has outgoing edge to other component.

Merge components

== N === into single component
\ along chosen edges.

Problem: Induced paths

might have O(n) length!

- Merging ©(n) components too costly...



Building Merge Trees

Goal: Merge all components in O(log n) steps.

For each component:

1. Choose random rank.

2. Keep outgoing-edge if
endpoint rank higher

Ranking yields directed trees of O(log n) depths.

Repeatedly merge leafs with their parents.



Faster Connectivity Testing

O(n/k?)-Time Algorithm
Initially: each vertex is component.

Repeat O(log n) times:
" For each component find outgoing
edge to other component.

= Merge components into
larger components.

O(log n) iterations sufficient to identify connected
components of input graph.

Each phase takes O(n/k?) = O(n/k?) rounds in total.



Roadmap

Algorithms
Graph Verification Constructing Trees
v/ Connectivity testing Y BFS Tree, MST
PageRank

Lower Bound Techniques

Communication Information
Complexity Theory



Time Lower Bound for Connectivity

Connectivity verification takes Q(n/k*log n) rounds.

Reduction from Set Disjointness Problem ( ) in
2-party communication complexity.

Proof Idea:

1. Show DISJ has high communication complexitv

Bandwidth restriction
2. Solve DISJl\Qartv model by

on links!
k-machine Random vertex Mrithm.

3. Connectiv Partitioning! f information




The Set Disjointness Problem

Universe: set of n elements. :comtl'j}’ CO“;I?;:(G)
Input: n-bit vectors X, Y. o unchonotid
Alice gets X 0
Bob gets Y ”
Alice and Bob output “yes” ﬂ
& thereis noi: X[i] = Y[i] = 1. By
4 ve

Classic 2-party model:
Alice only knows X (nothing of Y)
Bob only knows Y (nothing of X)/

How many bits?




The Set Disjointness Problem

Simulation requires X, Y to be assigned randomly.

Input graph randomly
= Alice knows all of X. assigned to machines
Bob knows all of Y.

* Each bitof X, Yis randomly r |
either Alice or Bob with pro Same as classic model. }

Communication complexity of Set Disjointness
in random partition model is Q(n).



Time Lower Bound for Connectivity

Every Connectivity algorithm takes Q(n/k?log n) rounds.

Reduction from Set Disjointness Problem ( ) in
2-party communication complexity.

Proof Idea:

1. Show DISJ has high communication complexity
under random input partitioning.

2. Solve DISJ in 2-party model by simulating
k-machine connectivity algorithm.

3. Connectivity requires lots of information = many rounds.



Solving Disjointness via Connectivity

Simulate Connectivity algorithm of k-machine model

in 2-party model. connected < X, Y disjoint

Input: DISJ instance. edges edges
Randomly assigned vectors: X, Y. for X[i]=0 @ @ for Y[i]=0

Alice and Bob: @ @
= Construct Graph(X,Y). v

=  Simulate k/2 machines each
= (Create vertex partition

1 1

via shared randomness _‘ \@ @
= |If uy,v,0n same machine: &N
return “No” ‘Ul

= Run Connectivity algorithm: u ,@
Use output to decide DIS] u — @




Time Lower Bound for Connectivity

Every Connectivity algorithm takes Q(n/k?log n) rounds.

Reduction from Set Disjointness Problem ( ) in
2-party communication complexity.

Proof Idea:

1. Show DISJ has high communication complexity
under random input partitioning.

2. Solve DISJ in 2-party model by simulating
k-machine connectivity algorithm.

3. Connectivity requires lots of information > many rounds.



High Communication - Many Rounds

-\ Alice and Bob each
e \// simulate %2k machines.

— ’@ @ Connectivity algorithm

solves Set Disjointness.

Communication complexity of Set Disjointness

How muck in random partition model is Q(n).
Bob’s macimesr

Each round of simulation generates < k?log n bits.

— Connectivity algorithm takes Q(n/k?log n) rounds.



Roadmap

Algorithms
Graph Verification Constructing Trees
v/ Connectivity testing Y BFS Tree, MST
PageRank

Lower Bound Techniques

v Communication Information
Complexity Theory



Distributed PageRank Computation

Goal: Machines output PageRank for their vertices.

Distributed Vertex-Centric PageRank Algorithm:

Each vertex starts O(log n) randpraalle . .
(Generates ©(log n) tokens.) All walks terminate in

Random walk step = send token O(log n / €) steps w.h.p.

At each step of token: terminate with prob €
continue with prob 1 —¢

- Vertex u outputs PageRank(u) = #(visits to u) € / ©(n log n)



Distributed PageRank Computation

Distributed Vertex-Centric PageRank Algorithm:

Each vertex starts O(log n) random walks.
(Generates ©(log n) tokens.)

Conversion Theorem

Simulation of A on input graph in k-machine model takes

O(% - Tf ) rounds. {

Total message complexity: M = O(n log? n)
Total time complexity: T = O(log n)
Communication degree: A’ = n 1
I I —
In the k-machine model: O(" og'n 4 n ) = O(Ek)




Faster PageRank Computation

Distributed Vertex-Centric PageRank Algorithm:

Each vertex starts O(log n) random walks.
(Generates ©(log n) tokens.)

Random walk step = send token to random neighbor

At each step of token: terminate with prob €
continue with prob 1 —¢

O .kd Tokens per machine O(n).
S ) - O(n/k) rounds unavoidable?

Od



Faster PageRank Computation
[work in progress]

Distributed Machine-Centric PageRank Algorithm:

Each vertex starts O(log n) random walks.
(Generates ©(log n) tokens.)

Random walk step:

= Combine tokens to u’s neighbors on same machine
by sending only their count.

= Send tokens via proxy machines

At each step of token: terminate with prob €
continue with prob 1 —¢



Faster PageRank Computation
[work in progress]

T, = expected number of tokens at vertex u
(in specific round r).

Group vertices into bins wrt T :

B={u|k/2"<T, <k/2'}

[lB,l <O0(2"*1n [ k) }
B-sets are distributed randomly.
- Each machine M has O(27*n / k? ) vertices from B,.

M has of k—1 tokens.
—> Sending all tokens for vE& B, requires 1/2'-fraction
of capacity.
- Sending all tokens of B, takes 2721 n / k? = O(n/k?) time.



Roadmap

Algorithms
Graph Verification Constructing Trees
v/ Connectivity testing Y BFS Tree, MST
v PageRank

Lower Bound Techniques

v Communication Information
Complexity Theory



Lower Bound on Finding Spanning Trees

Spanning Tree Construction:
= Each machine outputs list of incident tree edges.
= @Goal: machine outputs form spanning tree.

How fast can we find a spanning tree of the
input graph? | Huh!? | just showed you O(n/k?)
algorithm for connectivity (and ST)

O(n/k) rounds optimal for constructing any spanning tree!

Assumption: both machines holding endpoint vertices
output edge if edge is in ST.



The Hard Input Graph

Vertices:
= outer vertices: u, w
" ninner verticesvy,..,V,

Edges: ,
= Chosen by random @1 @ —
n-bit vectors X, Y. #”

= Restriction: X[i] + Y[i] = 1.

SEE)

n=4 X={1,1,0,1}

Ensures connectivity } ¥={1,0,1,1}

Intuition:
Every spanning tree has < n/2 edges of either u or w.

— High uncertainty wrt which edges to include in ST.



Information Theoretic Lower Bound

After partitioning granh-
u, w likely to be o And M, needs to @
learn about X. 9
§

machines; proba
M. needs to learn about Y to '
1 T

N ~ T 1 r

O How much information can machine learn
M, g per round?

=  Synchronous rounds

M,’s = Distinct ports

H(Y \_
Eventually: H( Y | InitialKnowl, ) <% n
=2 I( Y; Transcr, | Initialknowl, ) = Q(n).
-2 Q(n/ (klog?n log k) ) rounds.




More on Information Theoretic LBs

Works best for problems where output per
machine is large.

More involved LB proof for triangle enumeration problem
[work in progress]

If there are t triangles in input graph (sampled from
Rusza-Szemeredi graph), some machine outputs > t / k.

Show: initial knowled Best upper bound: O(n? / k/3)
information about ex (D.Dolev, Lenzen, Peled DISC'12)

-2 Q(m/ (k% log?n log k) ) rounds for triangle enumeration



Wrap-up

Is there a conversion theorem for getting
O(n / k%) or O(m / k?) type bounds?

Machine-centric vs

Vertex-centric algorithm design Fault-Tolerance?

Impact of partitioning of graph data?

Theory meets Practice: Implementing algorithms in
Apache Giraph, Spark/GraphX



