Distributed Computation of Large-scale Graph Problems

Peter Robinson

Joint work with:

Hartmut Klauck (NTU)

Danupon Nanongkai (KTH)

Gopal Pandurangan (UH)

Michele Scquizzato (UH)

Large-scale Graph Data

Large Graphs

- Web graph, social networks
- Transportation networks
- Ruver-seller relationship graphs

Too big to be processed by single commodity machine.

Important Problems Routing, shortest paths, ...
PageRank
Community detection
Connectivity testing, ...

Handling Large Graphs

Approach 1:

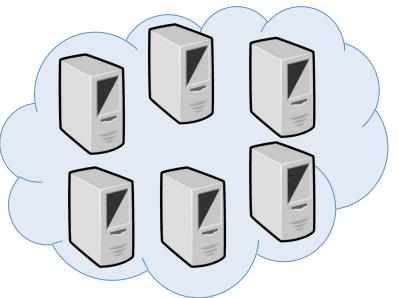
Buy more powerful hardware.

Approach 2:

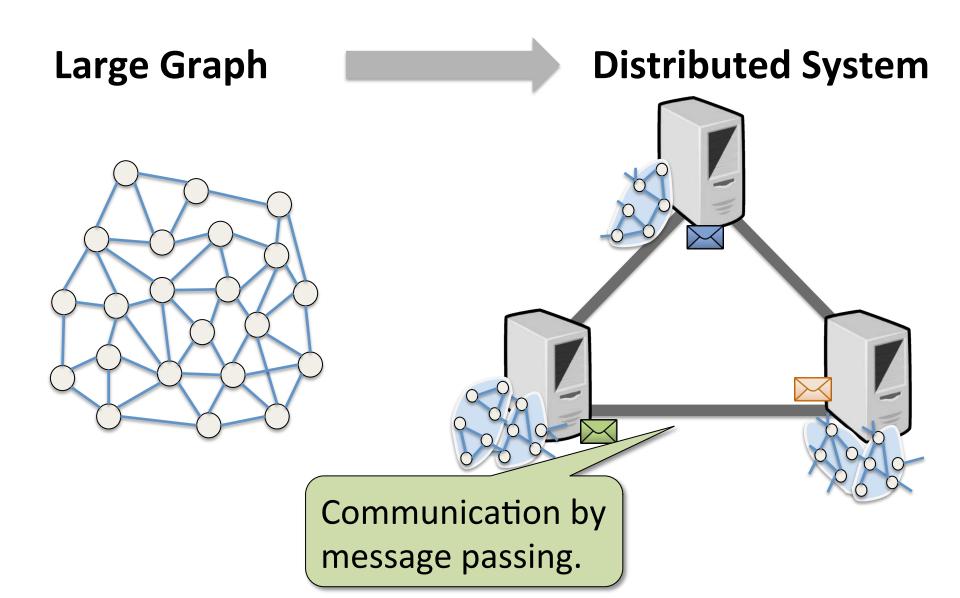
Build distributed system out of cheaper machines.

Fault-tolerant

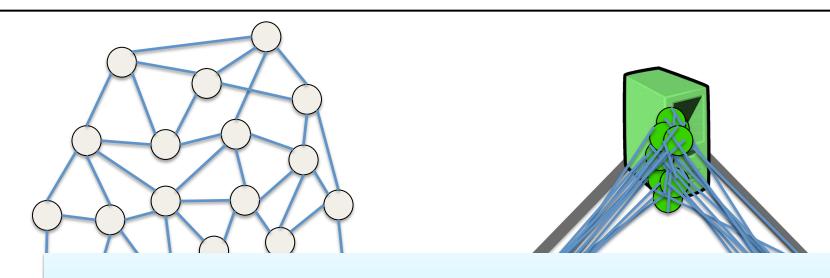
Scalable



Distributed Large Graph Processing



Partitioning the Input Graph



Fundamental Question:

How does the running time scale with k?

Input Data (Graph)

n vertices, m edges

Common practice (e.g. Pregel)

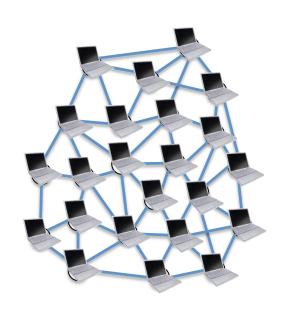
Random Vertex **Partitioning**

Actual Network

k machines clique

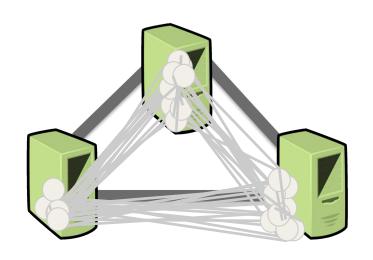
[Woodruff, Zhang'13] Worst case edge partitioning.

Designing algorithms for large graphs



Vertex-Centric Model:

- Vertices "run" algorithm;
 write code for vertex.
- Input graph = network.
- Classic distributed model



Machine-Centric Model:

- Machines run algorithm;
 write code for machine.
- Input graph = input data; network = k-clique

Systems for Large Graphs

Pregel & Apache Giraph

- Vertex-centric
- Synchronous message passing

GraphLab

- Vertex-centric
- Shared memory abstraction
- Asynchronous

PowerGraph

- Edge-centric model
- Suitable for power-law graphs

IBM Giraph++

- Extension of Giraph
- machine-centric computation

This talk: Message passing model; vertex/machine-centric

Roadmap

First some preliminaries...

Algorithms

Graph VerificationConnectivity testing

PageRank

Constructing Trees

BFS Tree, MST

Lower Bound Techniques

Communication Complexity

Information Theory

The Distributed k-Machine Model

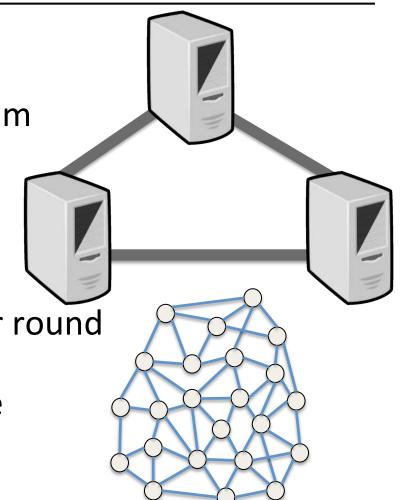
k physical machines runningsynchronous distributed algorithm

Point-to-point message passing over communication links

Link bandwidth: O(log n) bits per round

Each machine holds part of large *n*-node input graph.

Machines have local view and no shared memory.



Properties of Random Vertex Partitioning

Input Graph:

n vertices, m edges

Network:

k machines

Hides polylog(n).

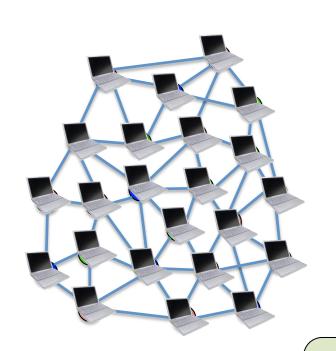
E.g. $\tilde{O}(n \log^2 n + \log n) = \tilde{O}(n)$

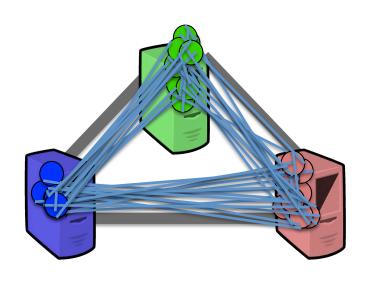
Δ is max degree of input graph

- $\tilde{O}(n/k)$ vertices per machine whp;
- → Vertices per machine are balanced.

- $\tilde{O}(m/k^2 + \Delta/k)$ edges per link whp;
- → Edges per link are balanced.

Designing Algorithms in k-Machine Model





Trivial Algo: Aggre

Vertices "run" algorithm:

input graph = distributed network

Takes Omit

Wealth of algorithms for vertex-centric model.

Simulating Vertex-Centric Algorithms

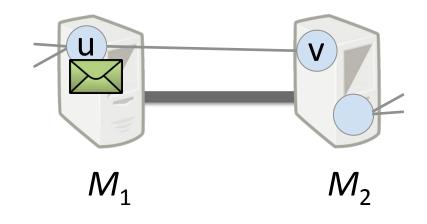
Suppose we have algorithm for vertex-centric model.

Idea: In *k*-machine model, simulate algorithm on input graph.

Each machine simulates execution on its vertices.

Simulating Message Passing:

When u sends \succeq to v: Machine M_1 sends msg (u,v,\succeq) to M_2



Simulating Vertex-Centric Algorithms

Performance Measures in Vertex-Centric (VC) Model:

- Message Complexity: M
- Time Complexity: T
- Communication Degree: △¹

At most Δ' messages sent/rcvd per vertex per round

Conversion Theorem – Part 1

Simulation of vertex-centric algorithm in k-machine model takes $\tilde{O}(\frac{M}{k^2} + \frac{T\Delta'}{k})$ rounds.

Efficient algorithm → Efficient algorithm in VC-model in k-machine model

Proof Idea of Conversion Theorem

Conversion Theorem – Part 1

Simulation of vertex-centric algorithm in k-machine model takes $\tilde{O}(\frac{M}{k^2} + \frac{T\Delta'}{k})$ rounds.

Recall: Random Vertex Partitioning

- → Edges per link are balanced.
- → In round r, activated edges A_r per link are balanced too!

Simulating 1 round takes
$$\tilde{O}\left(\frac{|A_r|}{k^2} + \frac{\Delta}{k}\right)$$

Total time:
$$\tilde{O}\left(\sum_{i=1}^{T}\left(\frac{|A_r|}{k^2}+\frac{\Delta'}{k}\right)\right)$$

$$M = |A_1| + \dots + |A_T|$$
ges per link.

Roadmap

Algorithms

Graph VerificationConnectivity testing

PageRank

Constructing Trees

BFS Tree, MST

Lower Bound Techniques

Communication Complexity

Information Theory

Application: Constructing BFS Tree

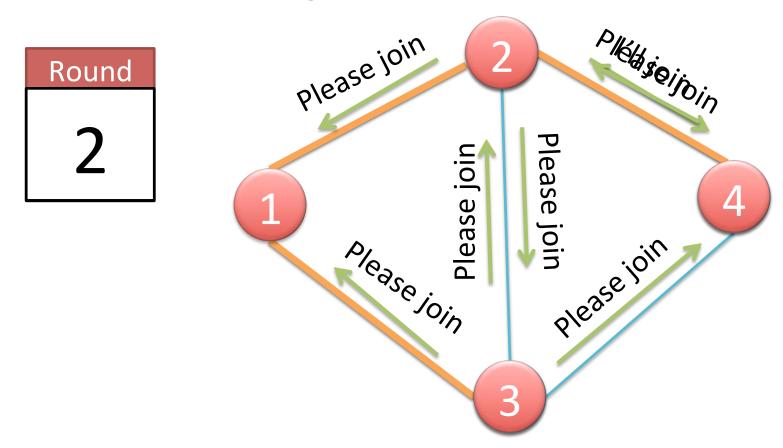
Goal: BFS tree rooted at source node

Vertex-Centric Algorithm:

Application: Constructing BFS Tree

Goal: BFS tree rooted at source node

Vertex-Centric Algorithm:



Application: Constructing BFS Tree

Performance in Vertex-Centric Model:

- Message complexity: 2m
- Time complexity: diameter 2D
- Communication degree: $\leq \Delta$

Performance in k-Machine Model:

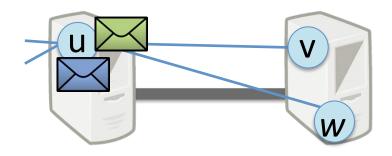
$$\rightarrow \tilde{O}(m/k^2 + D\Delta/k)$$

Conversion Theorem – Part 1

Simulation of vertex-centric algorithm in k-machine model takes $\tilde{O}(\frac{M}{k^2} + \frac{T\Delta'}{k})$ rounds.

Our simulation so far:

For each simulated message, we instruct machine to send message.

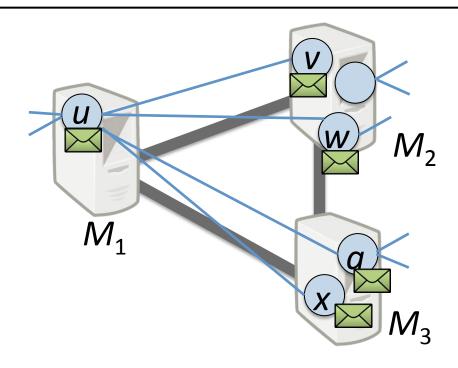


Bandwidth restriction of links is bottleneck.

Not necessary for broadcast algorithms! = =

Can we get better bounds for **broadcast algorithms**?

Simulating Broadcast Algorithms



Suppose vertex u broadcasts \bowtie in some round.

- M_1 sends (u, \bowtie) to M_2 , M_3 .
- M_2 , M_3 deliver \bowtie to all local neighbors of u.
- \rightarrow Simulating 1 broadcast requires $\leq k-1$ messages.

The Conversion Theorem – Part 2

Performance Measures of Broadcast Algorithms:

- Time Complexity T: running time in vertex-centric model
- Broadcast Complexity B: number of broadcasts

Conversion Theorem – Part 2

Simulation of vertex-centric broadcast algorithm in k-machine model takes $\tilde{O}(\frac{B}{k} + T)$ rounds.

Intuition: $\tilde{O}(n/k)$ vertices per machine whp.

 \rightarrow Same is true for number of broadcasts B.

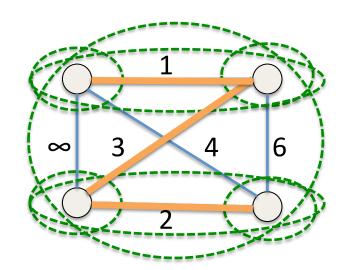
Application: Minimum Spanning Tree

Input graph has edge weights.

O(log n) time algorithm known in vertex-centric clique model.

Pretend input graph is clique:

→ add ∞-weight edges.



Vertex-Centric MST Algorithm:

Initially: every vertex is fragment.

While >1 fragment do:

- 1. Vertices compute minimum weight outgoing edge (MWOE) of their fragments by broadcast.
- 2. Add MWOEs to MST.
- 3. Merge fragments along MWOEs.

Application: Minimum Spanning Tree

Broadcast Complexity?

- Vertices find next outgoing edge of their fragment by broadcasting twice.
- Merging doubles size of fragments.
 - $\rightarrow O(\log n)$ iterations.
- Total number of broadcasts $B = O(n \log n)$.

Conversion Theorem – Part 2

Simulation of vertex-centric broadcast algorithm in machine model takes $\tilde{O}(\frac{B}{k} + T)$ rounds.

 \rightarrow In machine model: $\tilde{O}(\frac{n \log n}{k} + \log n) = \tilde{O}(n/k)$

Roadmap

Algorithms

Graph Verification

Connectivity testing

PageRank

Constructing Trees

∀ BFS Tree, MST

Lower Bound Techniques

Communication Complexity

Information Theory

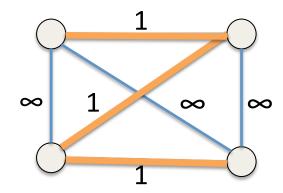
Distributed Graph Verification

Goal: Distributed testing of graph properties "No" Machines must output common "No" answer: "Yes" or "No". **Graph Connectivity:** Output "Yes" iff input graph is connected.

First Attempt: Verification in $\tilde{O}(n/k)$

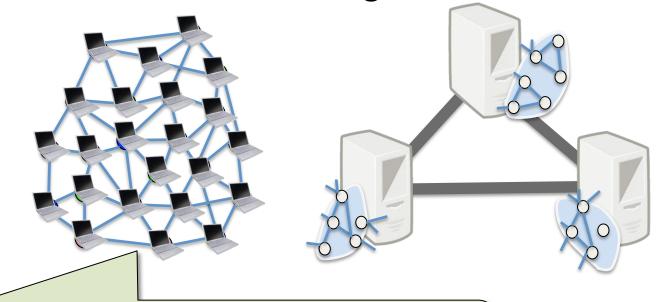
Is input graph connected?

- 1. Assign ∞ to missing edges.
- 2. Compute MST.
- 3. Connected ⇔ MST has finite weight.



Faster Connectivity Testing?

So far: Connectivity testing in $\tilde{O}(n/k)$ rounds based on **vertex-centric** MST algorithm.



Doesn't take advantage of *k*-clique topology.

Can we design faster machine-centric algorithms?

Faster Connectivity Testing

$\tilde{O}(n/k^2)$ -Time Algorithm

Initially: each vertex is component.

Repeat $\Theta(\log n)$ times:

- For each component find outgoing edge to other component.
- Merge components into larger components.

Similar to MST alg.

Breaking $\tilde{O}(n/k)$ barrier requires new techniques...

Can we get low messages complexity per machine?

Can we merge components efficiently?

Faster Connectivity Testing

$\tilde{O}(n/k^2)$ -Time Algorithm

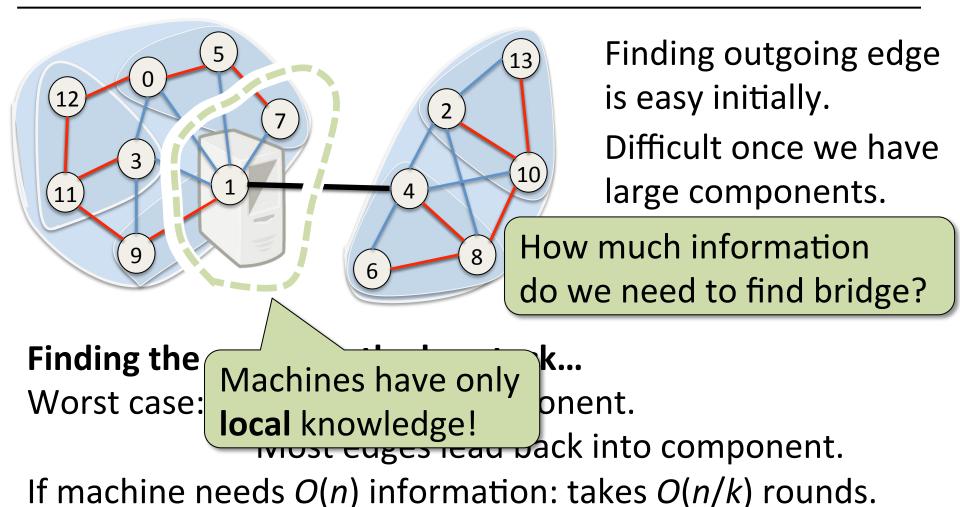
Initially: each vertex is component.

Repeat $\Theta(\log n)$ times:

- For each component find outgoing edge to other component.
- Merge components into larger components.

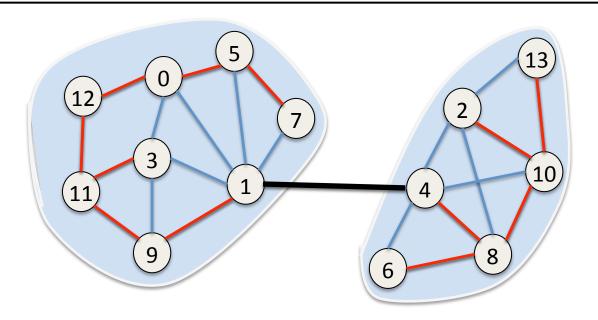
Can we get low messages complexity per machine?

Finding Outgoing Edges of Components



Can we avoid learning about all component members?

Graph Sketches to the Rescue



Sketch of left component: $s = s_0 + s_1 + s_3 + s_5 + s_7 + s_9 + s_{11} + s_{12}$ \rightarrow Sample returned by s is bridge edge.

We only need O(poly log n) bits to find bridge!

Machines locally compute sketches for their vertices \rightarrow O(n poly log n) messages in total.

Fast Communication via Random Proxies

Sketches provide overa Chosen by shared hash lexity but load per machine can b function Single component split across several machines into component parts. For each component: Choose "almost" random machine as proxy.

Each machine can send sketch for each component part to proxy in $\tilde{O}(n/k^2)$ rounds.

Intuition: Random choice of proxies ensures all k^2 links are used equally. No dependence on graph topology.

Faster Connectivity Testing

$\tilde{O}(n/k^2)$ -Time Algorithm

Initially: each vertex is component.

Repeat $\Theta(\log n)$ times:

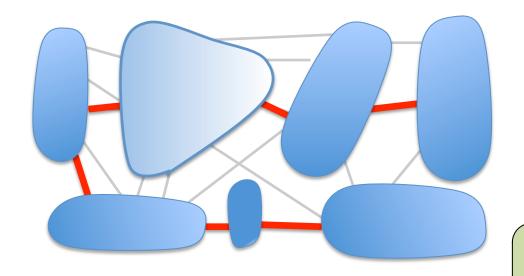
- For each component find outgoing edge to other component.
- Merge components into larger components.

Can we get low messages complexity per machine?

Can we merge components efficiently?

Merging Components

Each component has outgoing edge to other component.



Merge components into single component along chosen edges.

Problem: Induced paths might have $\Theta(n)$ length!

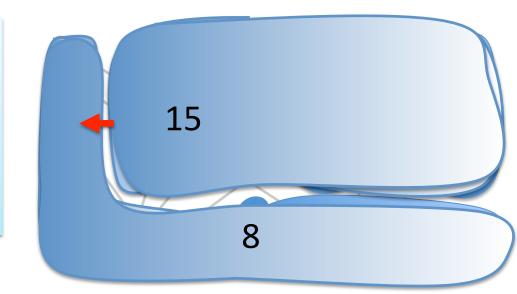
 \rightarrow Merging $\Theta(n)$ components too costly...

Building Merge Trees

Goal: Merge all components in $O(\log n)$ steps.

For each component:

- 1. Choose random rank.
- 2. Keep outgoing-edge if endpoint rank higher



Ranking yields directed trees of $O(\log n)$ depths.

Repeatedly merge leafs with their parents.

Faster Connectivity Testing

$\tilde{O}(n/k^2)$ -Time Algorithm

Initially: each vertex is component.

Repeat $\Theta(\log n)$ times:

- For each component find outgoing edge to other component.
- Merge components into larger components.

O(log n) iterations sufficient to identify connected components of input graph.

Each phase takes $\tilde{O}(n/k^2) \rightarrow \tilde{O}(n/k^2)$ rounds in total.

Roadmap

Algorithms

Graph Verification

Connectivity testing

PageRank

Constructing Trees

∀ BFS Tree, MST

Lower Bound Techniques

Communication Complexity

Information Theory

Time Lower Bound for Connectivity

Connectivity verification takes $\Omega(n/k^2 \log n)$ rounds.

Reduction from Set Disjointness Problem (DISJ) in 2-party communication complexity.

Proof Idea:

1. Show DISJ has high communication complexity

Bandwidth restriction
on links!

- 2. Solve DISJ in party model by son links! k-machine Random vertex rithm.
- 3. Connective partitioning! f information

The Set Disjointness Problem

Universe: set of *n* elements.

Input: *n*-bit vectors *X*, *Y*.

Alice gets X

Bob gets Y

Alice and Bob output "yes"

 \Leftrightarrow there is no i: X[i] = Y[i] = 1.

Jointly compute function of (X,Y)

1

)

 $\mathbf{0}$

Bob

Classic 2-party model:

Alice only knows *X* (nothing of *Y*)
Bob only knows *Y* (nothing of *X*)

How many bits?

The Set Disjointness Problem

Simulation requires X, Y to be assigned randomly.

Random Partition (RP) Model

- Alice knows all of X.] Bob knows all of Y.
- Each bit of X, Y is randomly re either Alice or Bob with prob Same as classic model.

Input graph randomly assigned to machines

Communication complexity of Set Disjointness in random partition model is $\Omega(n)$.

Time Lower Bound for Connectivity

Every Connectivity algorithm takes $\Omega(n/k^2 \log n)$ rounds.

Reduction from Set Disjointness Problem (DISJ) in 2-party communication complexity.

Proof Idea:

- √1. Show DISJ has high communication complexity under random input partitioning.
 - 2. Solve DISJ in 2-party model by simulating k-machine connectivity algorithm.
 - 3. Connectivity requires lots of information \rightarrow many rounds.

Solving Disjointness via Connectivity

Simulate Connectivity algorithm of *k*-machine model in 2-party model.

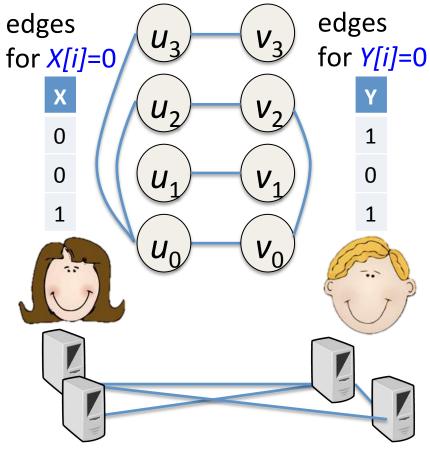
Input: DISJ instance.

Randomly assigned vectors: X, Y.

Alice and Bob:

- Construct Graph(X,Y).
- Simulate k/2 machines each
- Create vertex partition via shared randomness
- If u_0, v_0 on same machine: return "No"
- Run Connectivity algorithm: Use output to decide DISJ

connected ⇔ X, Y disjoint



Time Lower Bound for Connectivity

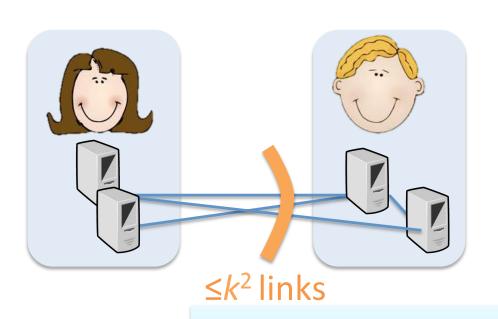
Every Connectivity algorithm takes $\Omega(n/k^2 \log n)$ rounds.

Reduction from Set Disjointness Problem (DISJ) in 2-party communication complexity.

Proof Idea:

- √1. Show DISJ has high communication complexity under random input partitioning.
- √2. Solve DISJ in 2-party model by simulating k-machine connectivity algorithm.
 - 3. Connectivity requires lots of information \rightarrow many rounds.

High Communication → Many Rounds



Alice and Bob each simulate ½k machines.

Connectivity algorithm solves Set Disjointness.

Communication complexity of Set Disjointness in random partition model is $\Omega(n)$.

Bob's macrimes:

Each round of simulation generates $\leq k^2 \log n$ bits.

 \rightarrow Connectivity algorithm takes $\Omega(n/k^2\log n)$ rounds.

Roadmap

Algorithms

Graph Verification

Connectivity testing

PageRank

Constructing Trees

∀ BFS Tree, MST

Lower Bound Techniques

Communication
Complexity

Information Theory

Distributed PageRank Computation

Goal: Machines output PageRank for their vertices.

Distributed Vertex-Centric PageRank Algorithm:

```
Each vertex starts \Theta(\log n) random walks (Generates \Theta(\log n) tokens.)

Random walk step = send token O(\log n / \epsilon) steps w.h.p.

At each step of token: terminate with prob \epsilon
```

continue with prob $1 - \varepsilon$

 \rightarrow Vertex u outputs PageRank(u) = #(visits to u) ε / $\Theta(n \log n)$

Distributed PageRank Computation

Distributed Vertex-Centric PageRank Algorithm:

Each vertex starts $\Theta(\log n)$ random walks. (Generates $\Theta(\log n)$ tokens.)

Conversion Theorem

Simulation of A on input graph in k-machine model takes $\tilde{O}(\frac{M}{k^2} + \frac{T\Delta'}{k})$ rounds.

Total message complexity: $M = \Theta(n \log^2 n)$

Total time complexity: $T = O(\log n)$

Communication degree: $\Delta' = n - 1$

In the k-machine model: $\tilde{O}(\frac{n\log^2 n}{k^2} + \frac{n\log n}{\epsilon k}) = \tilde{O}(\frac{n}{\epsilon k})$

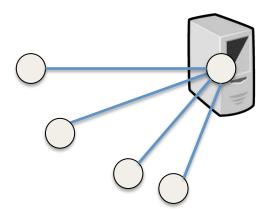
Faster PageRank Computation

Distributed Vertex-Centric PageRank Algorithm:

```
Each vertex starts \Theta(\log n) random walks. (Generates \Theta(\log n) tokens.)
```

Random walk step = send token to random neighbor

At each step of token: terminate with prob ϵ continue with prob $1 - \epsilon$



Tokens per machine $\Theta(n)$.

 $\rightarrow \Theta(n/k)$ rounds unavoidable?

Faster PageRank Computation

[work in progress]

Distributed Machine-Centric PageRank Algorithm:

Each vertex starts $\Theta(\log n)$ random walks. (Generates $\Theta(\log n)$ tokens.)

Random walk step:

- Combine tokens to u's neighbors on same machine by sending only their count.
- Send tokens via proxy machines

At each step of token: terminate with prob ε continue with prob $1 - \varepsilon$

Faster PageRank Computation

[work in progress]

 T_u = expected number of tokens at vertex u (in specific round r).

Group vertices into bins wrt T_{ii} :

$$B_i = \{ u \mid k / 2^{i+1} \le T_u \le k / 2^i \}$$

 $|B_i| \leq \tilde{O}(2^{i+1} n / k)$

 B_i -sets are distributed randomly.

 \rightarrow Each machine M has $\tilde{O}(2^{i+1}n/k^2)$ vertices from B_i .

M has per-round-capacity of k-1 tokens.

- → Sending all tokens for $v \in B_i$ requires $1/2^i$ -fraction of capacity.
- \rightarrow Sending all tokens of B_i takes $2^{-i}2^{i+1}n / k^2 = \tilde{O}(n/k^2)$ time.

Roadmap

Algorithms

Graph Verification

Connectivity testing

✓ PageRank

Constructing Trees

✓ BFS Tree, MST

Lower Bound Techniques

Communication
Complexity

Information Theory

Lower Bound on Finding Spanning Trees

Spanning Tree Construction:

- Each machine outputs list of incident tree edges.
- Goal: machine outputs form spanning tree.

How fast can we find a spanning tree of the input graph? Huh!? I just showed you $\tilde{O}(n/k^2)$ algorithm for connectivity (and ST)

 $\tilde{O}(n/k)$ rounds optimal for constructing **any** spanning tree!

Assumption: **both** machines holding endpoint vertices output edge if edge is in ST.

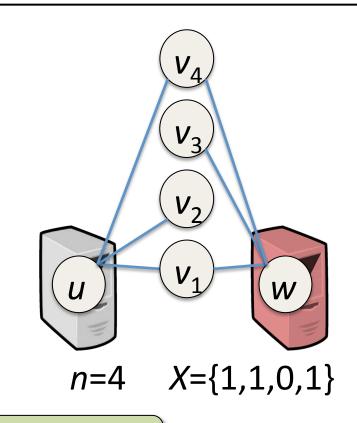
The Hard Input Graph

Vertices:

- outer vertices: u, w
- n inner vertices v₁,...,v_n

Edges:

- Chosen by random n-bit vectors X, Y.
- Restriction: $X[i] + Y[i] \ge 1$.



Ensures connectivity

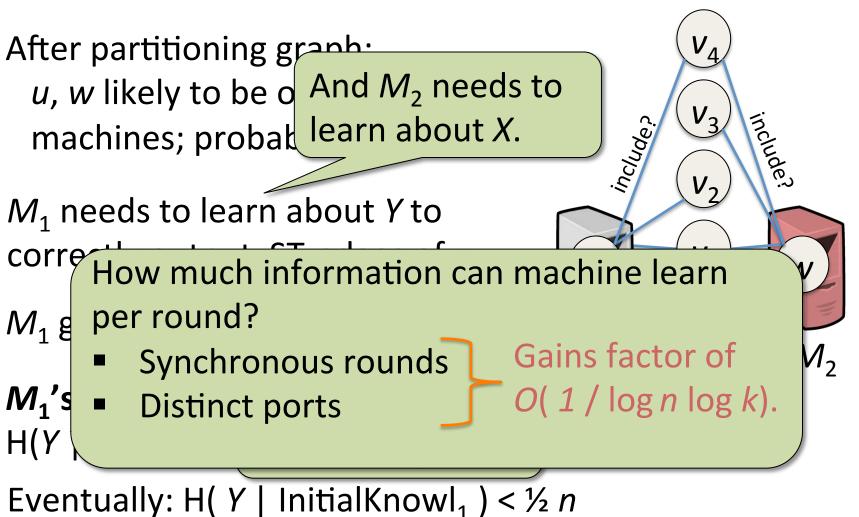
 $Y = \{1,0,1,1\}$

Intuition:

Every spanning tree has $\leq n/2$ edges of either u or w.

→ High uncertainty wrt which edges to include in ST.

Information Theoretic Lower Bound



⇒ I(Y; Transcr₁ | InitialKnowl₁) = $\Omega(n)$. ⇒ $\Omega(n / (k \log^2 n \log k))$ rounds.

More on Information Theoretic LBs

Works best for problems where output per machine is large.

More involved LB proof for **triangle enumeration** problem [work in progress]

If there are t triangles in input graph (sampled from Rusza-Szemeredi graph), some machine outputs $\geq t / k$.

Show: initial knowled Best upper bound: $\tilde{O}(n^2 / k^{5/3})$ information about ex (D.Dolev, Lenzen, Peled DISC'12)

 $\rightarrow \Omega(m/(k^2 \log^2 n \log k))$ rounds for triangle enumeration

Wrap-up

Is there a conversion theorem for getting $\tilde{O}(n/k^2)$ or $\tilde{O}(m/k^2)$ type bounds?

Machine-centric vs Vertex-centric algorithm design

Fault-Tolerance?

Impact of partitioning of graph data?

Theory meets Practice: Implementing algorithms in Apache Giraph, Spark/GraphX